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in multiple periods, can undo the contract by privately saving, and can temporarily in�ate
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be implemented by a "Dynamic Incentive Account": the CEO�s expected pay is escrowed
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Many classical models of CEO compensation consider only a single period, or multiple

periods with a single terminal consumption. However, the optimal static contract may be

ine¤ective in a dynamic world. In reality, securities given to incentivize the CEO may lose

their power over time: if �rm value declines, options may fall out-of-the-money and bear little

sensitivity to the stock price. The CEO may be able to engage in private saving, to achieve

a higher future income than intended by the contract, in turn reducing his e¤ort incentives.

Single-period contracts can encourage the CEO to engage in short-termism/myopia, i.e., in�ate

the current stock price at the expense of long-run value. In addition to the above challenges,

a dynamic setting provides opportunities to the �rm �the �rm can reward e¤ort with future

rather than current pay.

This paper analyzes a dynamic model that allows for all of the above complications, which

are likely important features in reality. We take an optimal contracting approach that allows

for fully history-dependent contracts without restrictions to particular contractual forms. The

key challenge of a dynamic setting with risk aversion, private saving and short-termism is that

the optimal contract is typically very complex and can only be solved numerically, which makes

it di¢ cult to see the intuition and understand which features of the setting are driving which

aspects of the contract. Our main methodological contribution is to achieve a surprisingly

tractable optimal contract. The model�s closed-form solutions lead to transparency, clarity,

and simplicity � they allow the economic forces behind the contract to be transparent, its

economic implications to be clear, and a simple practical implementation using the standard

instruments of cash and stock.

In the full model, the CEO engages in e¤ort, private saving and short-termism, and the

contract must achieve incentive compatibility in all three actions. The model�s tractability

allows us to see clearly the e¤ect of switching these actions on and o¤, and thus isolate the

role that each plays in determining the contract. We solve for both the level of pay, and the

sensitivity of pay to performance (i.e., the level of incentives).

In the simplest model, the CEO chooses only e¤ort. In the optimal contract, log pay is a

linear function of current and all past stock returns. Therefore, the rewards for exerting e¤ort

to increase the current return are spread over the current and all future periods, to achieve

intertemporal risk-sharing. The return in any given period a¤ects log pay in the current and all

future periods to the same degree �the �rst-period return has the same e¤ect on second-period

log pay as it does on �rst-period log pay. Moreover, in an in�nite-horizon model, the e¤ect of

the return in a given period on pay is independent of the period in which the return is realized.

Log pay is a¤ected by returns in all past periods to the same degree �the �rst-period return

and the second-period return have the same e¤ect on second-period log pay. In contrast, with

a �nite horizon, the sensitivity is increasing over time: log pay is more sensitive to current than

past returns, and the sensitivity to the current return intensi�es as the CEO becomes older (as

found empirically by Gibbons and Murphy (1992)). This is because there are fewer periods over

which to spread the reward for e¤ort, and so the reward in the current period must increase. We

thus generate a similar prediction to the model of Gibbons and Murphy, but without invoking
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career concerns.

When the CEO has the option to engage in private saving, the contract must remove his

incentives to undo the contract by doing so. Even if his compensation were �at, he would have

a motive to save if his own level of impatience di¤ers from that of the aggregate economy, as

the latter determines the interest rate. Furthermore, the presence of incentive compensation

exposes him to risk which he may wish to insure against. We show that, while the sensitivity

of the contract is a¤ected by the model horizon, it is una¤ected by whether the CEO can save

privately. Instead, the possibility of private saving a¤ects the level of pay, causing it to increase

faster over time. Rising pay e¤ectively saves for the CEO, removing the incentive for him to

do so privately. That the wage should rise with tenure provides a potential explanation for

seniority-based pay, which di¤ers from existing explanations based on internal labor markets.

The growth rate of consumption is increasing in the level of incentives: more sensitive contracts

expose the CEO to greater risk and thus provide him with a greater motive to save. Thus,

consumption grows more rapidly for CEOs with stronger incentives (e.g., due to more severe

agency problems), and accelerates over time in a �nite-horizon model where incentives rise over

time.

We �nally allow the CEO to also engage in short-termism, e.g., by changing accounting

policies or scrapping positive net present value (NPV) projects. The contract must change in

several ways to prevent such behavior. When myopia is infeasible (i.e., the CEO has no option

to engage in myopia), the CEO�s post-retirement income is independent of �rm performance

after departure, since he cannot a¤ect it. When myopia is feasible, he can now a¤ect post-

retirement returns by engaging in short-termism prior to departure. Thus his post-retirement

income must become sensitive to �rm returns to deter such actions. In addition, the sensitivity

of the contract now rises over time, even in an in�nite-horizon model. The CEO bene�ts from

short-termism as it boosts current pay, but the cost is only su¤ered in the future and thus

has a discounted e¤ect. An increasing sensitivity o¤sets the e¤ect of discounting by ensuring

that the CEO loses more dollars in the future than he gains today. The rate of the increase

in sensitivity and the extent of the CEO�s exposure to returns after retirement are greater if

the CEO is more impatient. Moreover, these direct changes to the sensitivity of the contract

further induce indirect changes to the level of pay. As the sensitivity rises to deter myopia, the

CEO is exposed to greater risk, in turn requiring higher pay to compensate.

The optimal contract can be implemented in the following simple manner. When appointed,

the CEO is given a �Dynamic Incentive Account� (�DIA�). The DIA contains the agent�s

wealth, i.e., the NPV of his future pay. A given fraction of this wealth is invested in the �rm�s

stock and the remainder in (interest-bearing) cash. Mathematically, the fraction of pay in stock

equals the sensitivity of log pay to the stock return, and so it represents the level of incentives.

As time evolves and �rm value changes, this portfolio is constantly rebalanced to ensure the

fraction of stock remains su¢ cient to induce e¤ort at minimum risk to the CEO. A fall in the

share price reduces the equity in the account below the required fraction; this equity shortage

is addressed by using cash in the account to purchase stock. If the stock appreciates, some
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equity can be sold without falling below the threshold, to reduce the CEO�s risk.

The following numerical example illustrates the role of rebalancing. The CEO is considering

whether to voluntarily forgo one week�s annual leave to work on a project that will increase �rm

value by 10%, or take his entitled holiday which is worth 6% of his salary to him. (The higher

the salary, the more the holiday is worth since he can spend his salary on holiday.) If his salary

is $10m, the holiday is worth $600,000. If the CEO has $6m of stock, working will increase its

value by 10%, or $600,000, thus deterring the holiday. Therefore, his $10m salary will comprise

$6m of stock and $4m of cash. Now assume that the �rm�s stock price has suddenly halved,

so that his stock is worth $3m. His total salary is $7m and the holiday is worth $420,000,

but working will increase his $3m stock by only $300,000. To induce e¤ort, the CEO�s gains

from working must be $420,000. This requires him to have $4.2m of stock, and is achieved by

using $1.2m of cash in the account to purchase new stock. Importantly, the $1.2m additional

equity is not given to the CEO for free, but accompanied by a reduction in cash to $2.8m. This

addresses a concern with the current practice of restoring incentives after stock price declines

by repricing options �the CEO is rewarded for failure.

The DIA also features gradual vesting: the CEO can only withdraw a percentage of the

account in each period. This has three roles. First, it achieves consumption smoothing. Second,

it addresses the e¤ort problem in future periods, by ensuring that the CEO has su¢ cient equity

in the future to induce e¤ort. These two roles exist even if short-termism is not feasible, and

requires vesting to be gradual during the CEO�s employment. Third, it addresses the myopia

problem in the current period, by preventing the CEO from in�ating earnings and cashing

out. This role requires vesting to be gradual even after the CEO retires. Gradual vesting is

a more e¤ective solution to short-termism than the clawbacks recently proposed. Clawbacks

are a �cure�to recoup compensation that was paid out prematurely; gradual vesting achieves

�prevention�of the premature payouts in the �rst place. While the former requires an explicit

decision by the board and is costly to implement, the latter allows the contract to run on

auto-pilot and requires no board involvement after the contract is set up.

In sum, the DIA has two key features, which each achieve separate objectives. State-

dependent rebalancing ensures that the CEO always exerts e¤ort in the current period. Time-

dependent vesting ensures that the CEO has su¢ cient equity in future periods to induce e¤ort,

and abstains from myopia in the current period. Critical to this simple implementation is the

fact that, even though consumption depends on the entire history of returns, the ratio of con-

sumption to promised wealth (and thus the vesting fraction) and the level of incentives (and thus

the fraction of stock to which the account must be rebalanced) are both history-independent.

In particular, the wealth in the account is a su¢ cient state variable for consumption in that

period; the sequence of past returns that generated that level of wealth is immaterial.

The model thus o¤ers theoretical guidance on how compensation might be reformed to

address the problems that manifested in the recent crisis, such as short-termism and weak

incentives after stock price declines. A number of papers (e.g., Bebchuk and Fried (2004),

Holmstrom (2005), Bhagat and Romano (2009)) have argued that lengthening vesting horizons
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may deter myopia. We provide a theoretical framework that allows us to analyze and augment

these verbal arguments (in particular, showing that gradual vesting is optimal even if short-

termism is not feasible). While those papers focus only on lengthening vesting horizons, the

DIA is critically di¤erent as it involves not only delayed vesting but also rebalancing. Delayed

vesting alone only solves the myopia problem and does not ensure that the CEO�s e¤ort in-

centives are replenished over time �even if the CEO must hold onto his options, they have

little incentive e¤ect if they are out-of-the-money. Moreover, in contrast to the above verbal

arguments, we formally solve for the vesting fraction in a number of cases to study the optimal

horizon of incentives � in particular, it is not always the case that lengthening the vesting

horizon (i.e., reducing the vesting fraction) improves e¢ ciency. In an in�nite-horizon model,

the vesting fraction is constant over time, and lower if private saving is possible. The agent

wishes to save to insure himself against the risk imposed by equity pay; a lower vesting fraction

provides automatic saving and removes these incentives. In a �nite-horizon model, the fraction

is increasing over time �since the CEO has fewer periods over which to enjoy his wealth, he

should consume a greater percentage in later periods.

Other theories also formally model the optimal vesting horizon. The critical di¤erence is

that, in those models, vesting and rebalancing are the same event �the CEO can only sell his

securities (i.e., rebalance his portfolio) when they vest. Those theories point out that early

vesting is sometimes desirable �in Chaigneau (2009) and Peng and Roell (2009), it allows the

CEO to reduce his risk by trading his stock for cash; in Brisley (2006) and Bhattacharyya and

Cohn (2010), this risk reduction encourages the CEO to take e¢ cient risky projects. Thus,

there is a trade-o¤ between the bene�ts of early rebalancing and the costs of early vesting. In

the �rst three papers, �rms choose short-vesting stock to permit early rebalancing, even though

it leads to some myopia. Brisley analyzes options where rebalancing is only necessary upon

strong performance, since only in-the-money options subject the CEO to risk. Therefore, in

Brisley�s model, as in our model, state-dependent rebalancing is e¢ cient. Since rebalancing

and vesting are the same event in Brisley (options can only be sold when they vest), this

requires state-dependent vesting. Indeed, Bettis et al. (2010) document that performance-

based (i.e., state-dependent) vesting is increasingly popular, where vesting is accelerated upon

high returns.1 However, this type of vesting may induce the CEO to in�ate the stock price

(an action not featured in Brisley) and cash out. Here, vesting and rebalancing are separate

events, allowing risk reduction without inducing myopia. High returns permit sales of equity

(i.e., rebalancing), but critically the proceeds remain in the account (vesting is not accelerated)

in case the returns are subsequently reversed. Our framework uses two separate instruments

�vesting and rebalancing �to achieve the two separate goals of inducing e¤ort and deterring

myopia without any trade-o¤.

This paper is related to the dynamic agency literature, such as DeMarzo and Sannikov

(2006), DeMarzo and Fishman (2007), He (2009), Sannikov (2008), Biais et al. (2007, 2010),

1State-dependent vesting is also featured in the �Bonus Bank�advocated by Stern Stewart, where the amount
of the bonus that the executive can withdraw depends on the total bonuses accumulated in the bank.
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Garrett and Pavan (2009, 2010), and Zhu (2011). The optimal contract in these papers is

typically highly complex (unless risk-neutrality is assumed, in which case private saving is a

non-issue), and they do not incorporate short-termism. Lacker and Weinberg (1989), Goldman

and Slezak (2006), Peng and Roell (2009), Sun (2009), and Hermalin andWeisbach (2011) study

short-termism (in the form of manipulation) in a static setting. To our knowledge, He (2011) is

the only other dynamic model featuring e¤ort, myopia and private saving. His setup requires

a discrete action choice and linear cost functions, private borrowing is ruled out, and the con-

tract can only be solved numerically. This paper considers a fairly general setting featuring all

three decisions, yet still obtains a closed-form contract which allows clear economic intuition

and simple implementation. We do so by using the framework of Edmans and Gabaix (2011a)

(�EG�), which allows us to deliver closed-form contracts in a multi-period setting; however,

EG restrict the CEO to consume in the �nal period only and thus cannot study private saving

or short-termism, nor do they consider how to implement the contract. Holmstrom and Mil-

grom (1987) similarly have only terminal consumption. Allowing for intermediate consumption

signi�cantly complicates the problem. If the agent cannot save privately, the principal must

solve for how to redistribute payments optimally over time to minimize the cost, creating extra

optimality conditions. If the agent can save privately, the principal must solve for how to de-

ter him from redistributing consumption to time periods with higher marginal utility, creating

extra constraints.

That the optimal contract exhibits memory (i.e., current pay depends on past output) was

�rst derived by Lambert (1983) and Rogerson (1985), who consider a two-period model where

the agent only chooses e¤ort. We extend this result to a multi-period model where the agent can

also save and in�ate earnings. Moreover, the execution of the contract through an incentive

account and thus wealth- rather than pay-based compensation allows a memory-dependent

contract to be implemented simply. Bolton and Dewatripont (2005) note that a �disappointing

implication of [memory-dependence] is that the long-term contract will be very complex,�which

appears to contradict the relative simplicity of real-life contracts. This complexity is indeed

unavoidable if the CEO is rewarded exclusively through new �ows of pay, as these �ows will

have to depend on the entire history of past outcomes.2 Importantly, our contract can be

implemented with a wealth-based account rather than with �ow pay. A fall in the share price

reduces the CEO�s wealth and thus his entire path of future consumption. Future consumption

is thus sensitive to past returns without requiring new �ows of pay to be history-dependent.

In allowing for private saving, this paper makes an additional methodological contribution.

To our knowledge, it is the �rst to derive su¢ cient conditions to guarantee the validity of the

�rst-order approach to solve a multi-period agency problem with private saving and borrowing.3

The �rst-order approach replaces the agent�s incentive constraints against complex multi-period

2While long-term incentive plans (LTIPs) are used in practice and relatively simple, they typically depend
on only a few years of performance rather than the entire history of performance as suggested by the model.

3Abraham, Koehne, and Pavoni (2011) provide su¢ cient conditions for the �rst-order approach with private
saving and borrowing in a two-period model, but these conditions are not su¢ cient for more than two periods.
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deviations with weaker local constraints (�rst-order conditions), with the hope that the solution

to the relaxed problem satis�es all constraints.4 This method is often valid if private saving is

impossible (hence the one-shot deviation principle), but problematic if the agent can engage in

joint deviations to save and shirk. This problem arises because saving insures against future

shocks to income and thus reduces e¤ort incentives. Our solution technique involves linearizing

the agent�s utility function and showing that, if the cost of e¤ort is su¢ ciently convex, the

linear utility function is concave in leisure (it is automatic that there is no incentive to save

under linear utility). Since the actual utility function is concave, linearized utility is an upper

bound for the agent�s actual utility. Thus, since there is no pro�table deviation under a linear

utility function, there is no pro�table deviation under the actual utility function either. This

technique may be applicable in other agency theories to verify the su¢ ciency of the �rst-order

approach.

This paper is organized as follows. Section I presents the model setup and Section II derives

the optimal contract when the CEO has logarithmic utility, as this version of the model is most

tractable. Section III shows that the key results continue to hold under general constant relative

risk aversion (CRRA) utility and autocorrelated noise. It also provides a full justi�cation of the

contract: it derives su¢ cient conditions that ensure that the agent will not undertake global

deviations, and shows that the principal does not want to implement a di¤erent e¤ort level.

Section IV extends the model to allow for myopia, and Section V concludes. The Appendix A

contains main proofs, and the Internet Appendix contains further peripheral material.

I. The Core Model

We consider a multi-period model featuring a �rm (also referred to as the �principal�)

which employs a CEO (�agent�). The �rm pays a terminal dividend D� (�earnings�) in the

�nal period � , given by

D� = X exp

 
�X
t=1

(a t + � t)

!
; (1)

where X represents baseline �rm size and a t 2 [0; �a] is the agent�s action (�e¤ort�). The action
a t is broadly de�ned to encompass any decision that improves �rm value but is personally

costly to the manager. Low a t can refer to shirking, diverting cash �ows or extracting private

bene�ts. � t is noise, which is independent across periods, has a log-concave density, and is

bounded above and below respectively by � and ��. (Section A allows for autocorrelated noises).

The goal of this paper is to achieve a tractable contract in a dynamic setting, to allow clear

implications. Holmstrom and Milgrom (1987) show that tractability can be obtained under the

joint assumptions of exponential utility, a �nancial cost of e¤ort, continuous time and Gaussian

4Another method of verifying the validity of the �rst-order approach is to verify global incentive compatibility
of each individual solution numerically rather than �nding conditions on primitives that ensure validity. For
example, see Werning (2001), Dittmann and Maug (2007) and Dittmann and Yu (2010). See also Kocherlakota
(2004) for the analytical challenges of dynamic agency problems with private savings.
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noise. We wish to allow for general noise distributions, decreasing absolute risk aversion (given

empirical evidence), discrete time (for clarity) and non-�nancial e¤ort costs. Many actions

do not involve a monetary expenditure; moreover, as we will discuss, a multiplicative rather

than �nancial cost of e¤ort is necessary to generate empirically consistent predictions. We

thus use the framework of EG who achieve tractability without the above assumptions by

specifying that, in each period t, the agent privately observes � t before choosing his action a t.

This timing assumption forces the incentive constraints to hold state-by-state (i.e., for every

possible realization of � t) and thus tightly restricts the set of admissible contracts, leading to

a simple solution to the principal�s problem.5 The timing is also featured in models in which

the CEO sees total output before deciding how much to divert (Lacker and Weinberg (1989),

DeMarzo and Fishman (2007), Biais et al. (2007)), and in which the CEO observes the �state of

nature�before choosing e¤ort (Harris and Raviv (1979), Sappington (1983) and Baker (1992),

and Prendergast (2002)). Note that the timing assumption does not render the CEO immune

to risk �in every period, except the �nal one, his action is followed by noise. Appendix B shows

that the contract has the same form in continuous time, where � and a are simultaneous.

After action at is taken, the principal observes a public signal of �rm value, given by:

St = X exp

 
tX

s=1

(as + �s)

!
:

The incremental news contained in St, over and above the information known in period t � 1
(and thus contained in St�1) can be summarized by rt = lnSt � lnSt�1, i.e.,

rt = at + �t: (2)

With a slight abuse of terminology, we call rt the �rm�s �return�.6 By observing St, the principal

learns rt, but not its components at and �t. The agent�s strategy is a function at(r1; : : : rt�1; �t)

that speci�es how his action depends on the current noise and the return history. After St (and

thus rt) is publicly observed, the principal pays the agent yt. We allow for a history-dependent

contract in which pay yt(r1; : : : rt) depends on the entire history of returns.7

5Edmans and Gabaix (2011b) use this framework to achieve tractability in a market equilibrium model of
CEO compensation under risk aversion.

6rt is the actual increase in the expected dividend as a result of the action and noise at time t. Given rational
expectations, the innovation in the stock return is the unexpected increase in the stock price. In turn, the stock
price is the discounted expected dividend and includes the expected future e¤ort levels. Assuming zero risk
premium for simplicity, the stock price is thus:

Pt = X exp

 
tX

s=1

(as + �s) + (� � t) (a�t �R+ lnE [e�t ])
!
;

where R is the risk-free rate. Therefore, the �rm�s actual log return is lnPt � lnPt�1 = rt � a�t +R� lnE[e�t ].
7A fully general contract can involve the income yt depending on messages sent by the agent regarding �t.

We later derive a su¢ cient condition under which the optimal contract implements a �xed action, a , in every
period. Hence, on the equilibrium path, there is a one to one correspondence between rt and �t, which makes
messages redundant: see EG for a formal proof. We allow the contract to depend on messages when providing
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Having received income yt, the agent consumes ct and saves (yt � ct) at the continuously

compounded risk-free rate R. The agent may borrow as well as save, i.e., (yt � ct) may be

negative. Such borrowing and saving are unobserved by the principal. Following a standard

argument (see, e.g., Cole and Kocherlakota (2001)), we can restrict attention to contracts in

which the agent chooses not to save or borrow in equilibrium, i.e., ct = yt.8 Any contract in

which the CEO chooses to save to achieve a di¤erent consumption pro�le can be replaced by

an equivalent contract providing the same consumption pro�le directly, so there is no loss of

generality in focusing on contracts in which there is no private saving. Note this means that (as

is standard) we are only uniquely solving for the agent�s consumption pro�le, not his income

pro�le. It could be that the principal could implement the same consumption pro�le with a

di¤erent income pro�le, and the agent would voluntarily choose to save away from this income

pro�le to achieve exactly the consumption pro�le intended by the agent.

The agent�s per-period utility over consumption ct 2 [0;1) and e¤ort at is given by

u (cth(at)) ; (3)

where h (0) = 1 and g (a) = � lnh (a) is an increasing, convex function. u is a CRRA utility
function with relative risk aversion coe¢ cient  > 0, i.e., u (x) = x1�= (1� ) if  6= 1, and
u (x) = lnx for  = 1.

The agent lives in periods 1 through T � � and retires after period L � T . After retirement,

the �rm replaces him with a new CEO and continues to contract optimally.9 The agent discounts

future utility at rate �, so that his total discounted utility is given by:

U =
TX
t=1

�tu(cth(at)): (4)

As in Edmans, Gabaix, and Landier (2009), e¤ort has a multiplicative e¤ect on both CEO

utility (equation (3)) and �rm earnings (equation (1)). Multiplicative preferences (u (ct; at) =

u (cth(at))) consider private bene�ts as a normal good (i.e., the utility they provide is increasing

in consumption), consistent with the treatment of most goods and services in consumer theory.

They are also common in macroeconomic models: in particular, they are necessary for labor

supply to be constant over time as wages rise; with additive preferences, leisure falls to zero as

the wage increases.10 With a multiplicative production function, the dollar bene�ts of working

the optimality of a �xed target action in Section C. Similarly, we restrict the analysis to deterministic contracts;
EG show that assuming that noise has a log-concave distribution (in addition to non-increasing absolute risk
aversion, which we have) is su¢ cient to rule out stochastic contracts.

8As is standard, the CEO can save in the risk-free rate but not the stock, otherwise the CEO would be able
to undo the contract and give himself a �at salary. Insider trading is illegal in nearly all countries.

9This assumption could easily be weakened. The stock return after the CEO�s retirement is driven only by
deviations in the successor�s e¤ort level from the market�s expectations (plus noise), so any publicly observed
contract would have the same e¤ect.
10Bennardo, Chiappori and Song (2010) show that a multiplicative utility function can rationalize perks.
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are higher for larger �rms.11 Under the literal interpretation of a as e¤ort, initiatives can be

�rolled out�across the entire �rm and thus have a greater e¤ect in a larger company; under the

interpretation of cash �ow diversion, a large �rm has more resources to steal.12 The manager

thus has a linear e¤ect on the �rm�s stock return. Edmans, Gabaix, and Landier (2009) show

that multiplicative speci�cations are necessary to deliver empirically consistent predictions for

the scaling of various incentive measures with �rm size.

The principal is risk-neutral and uses discount rate R. Her objective function is thus:

max
(at;t=1;:::L);(yt;t=1;:::T )

E

"
e�R�D� �

TX
t=1

e�Rtyt

#
;

i.e., the expected discounted dividend, minus expected pay. The individual rationality (IR)

constraint is that the agent achieves his reservation utility of u, i.e.,

E

"
TX
t=1

�tu(cth(at))

#
= u:

The incentive compatibility constraints require that any deviation (in either the action or

consumption) by the agent reduces his utility, i.e.,

E

"
TX
t=1

�tu(bcth(ât))# � u

for all alternative e¤ort strategies (ât; t = 1; : : : L) and feasible consumption strategies (bct; t = 1; : : : T ) :
A consumption strategy is feasible if it satis�es the budget constraint

TX
t=1

e�Rtct �
TX
t=1

e�Rtyt:

We use the notation Ea and E â to highlight that the agent�s e¤ort strategy a¤ects the proba-

bility distribution over return paths.

The problem is complex because contracts are history-dependent, the agent can privately

save, and the principal must choose the optimal e¤ort level. Our solution strategy is as fol-

lows. We �rst consider a deterministic (but possibly time-varying) sequence of target actions

(a�t ; t = 1; : : :; L) and conjecture that the optimal contract involves binding local constraints.

Following this conjecture we (i) derive the necessary local constraints that a candidate contract

must satisfy in Section A; (ii) �nd the cheapest contract that satis�es these constraints (Theo-

rem 1 in Section B) and show that the constraints bind (Theorem 2 in Section A); (iii) derive a

su¢ cient condition under which the candidate contract is also fully incentive-compatible, i.e.,

11This is similar to Gabaix and Landier (2008), where CEO talent has a multiplicative e¤ect on �rm value.
12See Bennedsen, Perez-Gonzalez, and Wolfenzon (2010) for empirical evidence that CEOs have the same

percentage e¤ect on �rm value, regardless of �rm size.
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prevents global deviations (Theorem 3 in Section B); (iv) verify that if �rm size X is su¢ ciently

large, the optimal contract indeed involves a deterministic path of target actions: the highest

e¤ort level a�t = a is implemented in each period (Theorem 4 in Section C).

Note that we do not require part (iv) and Theorem 4 if we wish to focus on implementing a

given sequence of target actions (the �rst stage of Grossman and Hart (1983)) rather than also

determining the optimal e¤ort level (the second stage of Grossman and Hart). Indeed, many

contracting papers focus exclusively on solving for the optimal contract to implement a given

e¤ort level, rather than jointly solving for the optimal action (see, e.g., Dittmann and Maug

(2007), Dittmann, Maug, and Spalt (2010)) given the substantial complexity of the latter.

II. Log Utility

A. Local Constraints

A candidate contract must satisfy two local constraints. The e¤ort (EF) constraint ensures

that the agent exerts the target e¤ort level (at = a�t ). The private saving (PS) constraint ensures

that the agent consumes the full income provided by the contract (ct = yt). To highlight the

e¤ect of allowing for private saving on the contract, we also consider a version of the model

in which private saving is impossible (i.e., the principal can monitor savings), and so the PS

constraint is not imposed.

Consider an arbitrary contract (yt; t = 1; : : : T ), a consumption strategy (ct; t = 1; : : : T ) and

an e¤ort strategy (at; t = 1; : : : L) : Recall that yt and ct depend on the entire history (r1; : : : rt)

and at depends on (r1; : : : rt�1; �t): To capture history-dependence, Et denotes the expectation

conditional on (r1; : : : rt).

We �rst address the EF constraint, which ensures that the CEO does not wish to choose a dif-

ferent level of e¤ort. We consider a local deviation in the action at after history (r1; : : : rt�1; �t):

The e¤ect on CEO utility is

Et

�
@U

@rt

@rt
@at

+
@U

@at

�
:

Since @rt=@at = 1 and @U=@at = �tcth
0(at)u

0(cth(at)), the EF constraint is:

EF : Et

�
@U

@rt

�
= �tct(�h0(at))u0(cth(at)) if at 2 (0; a) (5)

Et

�
@U

@rt

�
� �tct(�h0(at))u0(cth(at)) if at = a.

for t � L.

We next consider the PS constraint. If the CEO saves a small amount dt in period t and

invests it until t+ 1; his utility increases to the leading order by:

�Et
�
@U

@ct

�
dt + Et

�
@U

@ct+1

�
eRdt:
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To deter private saving or borrowing, this change should be zero to the leading order, i.e.,

PS : �th(at)u0(cth(at)) = Et
�
�t+1eRh(at+1)u

0(ct+1h(at+1))
�
: (6)

for t < T . This is the standard Euler equation for consumption smoothing: discounted marginal

utility eRt�th(at)u0(cth(at)) is a martingale. Intuitively, if it were not a martingale, the agent

would privately reallocate consumption to the time periods with higher marginal utility.

The Euler equation contrasts with the �Inverse Euler Equation� (IEE), which applies to

agency problems without the possibility of private saving and thus the PS constraint, when

utility is additively separable in consumption and e¤ort (e.g., Rogerson (1985) and Farhi and

Werning (2009)). In our model, utility becomes additive if u(x) = lnx, and the IEE is:

IEE: ��tct = Et
�
e�R��t�1ct+1

�
. (7)

for t < T . The inverse of the agent�s discounted marginal utility e�Rt��tct, which equals

the marginal cost of delivering utility to the agent, is a martingale. If (7) did not hold, the

principal would shift the agent�s utility to periods with a lower marginal cost of delivering it.

This argument is invalid for  6= 1, because the agent�s marginal cost of e¤ort depends on his
consumption when utility is nonadditive.

B. The Contract

We now derive the cheapest contract that satis�es the local constraints. We �rst consider

log utility as the expressions are most tractable, since the agent consumes the same amount

in each period. In addition, it allows us to consider the model both with and without the PS

constraint, since with log utility, the IEE applies in the case where there is no PS constraint.

Section III considers  6= 1.

Theorem 1 (Log utility.) The cheapest contract that satis�es the local constraints for a target

action at = a�t (t � L) is as follows. In each period t, the CEO is paid a compensation ct which

satis�es:

ln ct = ln c0 +
tX

s=1

�srs +
tX

s=1

ks; (8)

where �s and ks are constants. The sensitivity �s is given by

�s =

(
g0(a�s)

1+�+:::+�T�s for s � L;

0 for s > L:
(9)

If private saving is impossible, the constant ks is given by:

ks = R + ln �� lnE[e�s(a�s+�)]: (10)
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If private saving is possible, ks is given by:

ks = R + ln �+ lnE[e��s(a
�
s+�)]: (11)

The initial condition c0 is chosen to give the agent his reservation utility u:

Heuristic proof. Appendix A contains a full proof; here we present a heuristic proof in a
simple case that gives the key intuition. We consider L = T = 2, � = 1, R = 0, a�1 = a�2 = a�

and impose the PS constraint. We wish to show that the optimal contract is given by:

ln c1 = g0 (a�)
r1
2
+ �1; ln c2 = g0 (a�)

�r1
2
+ r2

�
+ �1 + k2 (12)

for some constants �1 (the equivalent of ln c0 + k1 in the Theorem) and k2 that make the IR

constraint bind.

Step 1: Optimal log-linear contract

We �rst solve the problem in a restricted class where contracts are log-linear, i.e.:

ln c1 = �1r1 + �1, ln c2 = �21r1 + �2r2 + �1 + k2 (13)

for some constants �1, �21; �2, �1; k2. This �rst step is not necessary but clari�es the economics,

and is helpful in more complex cases to guess the form of the optimal contract.

First, intuitively, the optimal contract entails consumption smoothing, i.e., shocks to con-

sumption are permanent. This observation implies �21 = �1. To prove this, the PS constraint

(6) yields:

1 = E1

�
c1
c2

�
= e(�1��21)r1E1

�
e��2r2�k2

�
: (14)

This must hold for all r1. Therefore, �21 = �1 and k2 = lnE1
�
e��2r2

�
, as in (11).

Next, consider total utility U :

U = ln c1 + ln c2 � g (a1)� g (a2)

= 2�1r1 + �2r2 � g (a1)� g (a2) + 2�1 + k2:

From (5), the two EF conditions are E1
h
@U
@r1

i
� g0 (a�) and E2

h
@U
@r2

i
� g0 (a�); i.e.:

2�1 � g0 (a�) and �2 � g0 (a�) :

Intuitively, the EF constraints should bind (proven in the Appendix), else the CEO is exposed

to unnecessary risk. Combining the binding version of these constraints with (13) yields (12).

Step 2: Optimality of log-linear contracts
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We next verify that optimal contracts should be log-linear. Equation (5) yields: d (ln c2) =dr2 �
g0 (a�). The cheapest contract involves this local EF condition binding, i.e.,

d (ln c2) =dr2 = g0 (a�) � �2: (15)

Integrating yields the contract:

ln c2 = �2r2 +B (r1) ; (16)

where B (r1) is a function of r1 which we will determine shortly. The function B (r1) is the

integration �constant�of equation (15) viewed from time 2.

We next apply the PS constraint (6) for t = 1:

1 = E1

�
c1
c2

�
= E1

h c1
e�2r2+B(r1)

i
= E1

�
e��2r2

�
c1e

�B(r1); (17)

where the second equality follows from (16). Hence, we obtain

ln c1 = B (r1) +K; (18)

where the constant K is independent of r1. (In this proof, K, K 0 and K 00 are constants

independent of r1 and r2.) Total utility is:

U = ln c1 + ln c2 +K 0 = �2r2 + 2B(r1) + 2K +K 0: (19)

We next apply (5) to (19) to yield: 2B0 (r1) � g0 (a�) : Again, the cheapest contract involves

this condition binding, i.e., 2B0 (r1) = g0 (a�) : Integrating yields:

B (r1) = g0 (a�)
r1
2
+K 00: (20)

Combining (20) with (18) yields: ln c1 = g0 (a�) r1
2
+ �1, for another constant �1. Combining

(20) with (16) yields:

ln c2 = g0 (a�)
�r1
2
+ r2

�
+ �1 + k2;

for some constant k2. �
The contract�s closed-form solutions allow transparent economic implications. Equation (8)

shows that time-t income should be linked to the return not only in period t, but also in all

previous periods. Therefore, changes to rt (due to e¤ort or shocks) boost log pay in the current

and all future periods equally. Since the CEO is risk-averse, it is e¢ cient to spread the e¤ect of

e¤ort and noise over the future. Indeed, Boschen and Smith (1995) �nd empirically that �rm

performance has a much greater e¤ect on the NPV of future pay than current pay.

We now consider how the contract sensitivity changes over time. We consider the case of a

�xed target action (a�t = a� 8t) so that changes in the contract�s sensitivity are not driven by
changes in the implemented e¤ort level. Equation (9) shows that, in an in�nite horizon model
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(T = � !1), the sensitivity is constant and given by:

�t = � = (1� �) g0 (a�) : (21)

This is intuitive: the contract must be su¢ ciently sharp to compensate for the disutility of

e¤ort, which is constant. Thus, not only does rt have the same e¤ect on log consumption in

every period, but also ln ct is a¤ected by the return in every period to the same degree. The

sensitivity to the current-period return is decreasing in the discount rate �if the CEO is more

impatient (lower �), it is necessary to reward him today rather than in the future.

However, for any model with �nite life T , equation (9) shows that �t is increasing over time.

To understand the intuition for this increasing sensitivity, we distinguish between the increase

in lifetime utility for exerting e¤ort (@U=@at) and the increase in current utility (@ut=@at = �t);

the latter also equals the increase in current log consumption (@ ln ct=@at). Since the disutility

of e¤ort is constant, the lifetime utility reward for e¤ort, @U=@at, must also be constant. When

there are fewer remaining periods over which to smooth out this lifetime increase, the increase

in current utility (@ut=@at) must be higher. By contrast, Gibbons and Murphy (1992) generate

an increasing current sensitivity because the lifetime increase in utility @U=@at rises over time to

o¤set falling career concerns. In Garrett and Pavan (2009), the current sensitivity rises over time

because @U=@at increases to minimize the agent�s informational rents. Here, @U=@at is constant

since we have no adverse selection or career concerns; instead, the increase in @ut=@at stems

from the reduction in consumption smoothing possibilities as the CEO approaches retirement.

Both Gibbons and Murphy (1992) and Cremers and Palia (2011) document that incentives

increase with CEO tenure.

As in the in�nite-horizon case, with a �nite horizon the sensitivity to the current return

decreases with discount rate �. In the �nite-horizon case, � also determines the speed at

which incentives rise over time. If the CEO is more patient, the contract involves greater

consumption smoothing to begin with, and so the contract is more greatly a¤ected by the decline

in consumption smoothing possibilities as retirement approaches. Thus, incentives increase

particularly rapidly for more patient CEOs.

While �t depends on the model horizon, it is independent of whether private saving is

possible �this possibility only a¤ects kt. Since private saving does not a¤ect the agent�s action

and thus �rm returns, the sensitivity of pay to returns is unchanged. Instead, the possibility

of private saving alters the time trend in the level of pay. The log expected growth rate in pay

is, from (8): lnE [ct=ct�1] = kt + lnE
�
e�trt

�
.

If private saving is impossible, substituting for kt using (10) yields:

lnE [ct=ct�1] = R + ln �,

which is constant over time and independent of risk. The risk-free rate R is determined by

the time preference of the aggregate economy. If and only if the CEO is more patient than
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the representative agent, then the growth rate is positive, as is intuitive. If private saving is

possible, (11) yields:

lnE [ct=ct�1] = R + ln �+ lnE[e��trt ] + lnE[e�trt ]:

In the limit of small time intervals (or, equivalently, in the limit of small variance of noise �2),

this yields:

lnE [ct=ct�1] = R + ln �+ �2t�
2
t :

Thus, the growth rate of consumption is always greater when private saving is possible. This

faster upward trend means that the contract e¤ectively saves for the agent, removing the need

for him to do so himself. This result is consistent with He (2011), who �nds that the optimal

contract under private saving involves a wage pattern that is non-decreasing over time.13 The

model thus predicts a positive relationship between the wage and tenure, which is consistent

with the common practice of seniority-based pay. Cremers and Palia (2011) con�rm this re-

lationship empirically. Moreover, the growth rate depends on the risk to which the CEO is

exposed, which is in turn driven by his sensitivity to the �rm�s returns �, and the volatility

of �rm returns �. CEOs with stronger incentives (e.g., because the agency problem is more

severe) or who work in riskier �rms will have pay growing more rapidly over time. This is

intuitive: a rising level of pay insures the CEO from risk, removing the need for him to do so

himself. Furthermore, in a �nite-horizon model, �t is increasing over time and so the growth

rate of consumption rises with tenure, i.e., pay accelerates over time.

We can also calculate how much the expected cost of compensation rises if private saving

is possible and the principal must impose the PS constraint �i.e., the cost to the principal of

her inability to monitor the CEO�s private saving. We follow the analysis of Farhi and Werning

(2009) for this calculation.

Corollary 1 (Cost of Private Saving). De�ne � = (Expected cost of contract imposing PS)

/ (Expected cost of contract without imposing PS), and consider L = T = 1 and a�t = a� 8t.
We have � � 1 and:

� =
1� �

1� �e�2�2
e�

��2�2

1�� ;

using the notation �2�2 = lnE
�
e���

�
+ lnE

�
e+��

�
. In the limit of small time intervals, � �

� = (1� �) g0 (a�) and � � e�
�2�2

1�� = (1� �2�2= (1� �)).

The ratio � increases in the risk borne by the agent �2�2, as this a¤ects his desire to save.

In addition, from (21) we see that � is closer to one when the agent is more patient.

13Lazear (1979) has a back-loaded wage pattern for incentive, rather than private saving considerations (the
agent is risk-neutral in his model). Since the agent wishes to ensure he receives the high future payments, he
induces e¤ort to avoid being �red. Similarly, in Yang (2009), a back-loaded wage pattern induces agents to
work to avoid the �rm being shut down.
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The contract in Theorem 1 also has implications for the appropriate measure of incentives.

Taking �rst di¤erences of this contract yields:

ln ct � ln ct�1 = �trt + kt: (22)

The percentage change in CEO pay is linear in the �rm�s return rt, i.e., the percentage change

in �rm value. Thus, the relevant measure of incentives is the percentage change in pay for a

percentage change in �rm value (�percent-percent�incentives), or equivalently the elasticity of

CEO pay to �rm value; in real variables, this elasticity equals the fraction of total pay that

is comprised of stock. This elasticity/fraction must be �t to achieve incentive compatibility

and is independent of �rm size. �Percent-percent�incentives are relevant because e¤ort has a

multiplicative (i.e., percentage) e¤ect on both CEO utility and �rm value.

Empiricists have used alternative statistics to measure incentives � Jensen and Murphy

(1990) calculate �dollar-dollar�incentives (the dollar change in CEO pay for a dollar change in

�rm value) and Hall and Liebman (1998) measure �dollar-percent�incentives (the dollar change

in CEO pay for a percentage �rm return.) By contrast, Murphy (1999) advocates elasticities

(�percent-percent� incentives) on empirical grounds: they are invariant to �rm size and thus

comparable across �rms of di¤erent size (as found by Gibbons and Murphy (1992)), and �rm

returns have greater explanatory power for percentage than dollar changes in pay. Thus, �rms

behave as if they target percent-percent incentives. However, he notes that �elasticities have

no corresponding agency-theoretic interpretation.�Our framework provides a theoretical justi-

�cation for using elasticities to measure incentives. Edmans, Gabaix, and Landier (2009) show

that multiplicative preferences and production functions generate elasticities as the incentive

measure, motivating the usage of these assumptions here (equations (1) and (3)).14 Their result

is derived in a one-period model with a risk-neutral CEO; we extend it to a dynamic model

with risk aversion and private saving.

The contract in Theorem 1 involves binding local constraints and implements at = �a. The

remaining steps are to show that the agent will not undertake global deviations (e.g., make large

single-action changes, or simultaneously shirk and save) and that the principal cannot improve

by implementing a di¤erent e¤ort level or allowing slack constraints. Since these proofs are

equally clear for general  as for log utility, we delay them until Section III.

B.1. A Numerical Example

This section uses a simple numerical example to show most clearly the economic forces

behind the contract. We �rst set T = 3, L = 3, � = 1, a�t = a� and g0 (a�) = 1. From (9), the

14Peng and Roell (2009) also use a multiplicative speci�cation and restrict analysis to contracts where log
pay is linear in �rm returns. This paper endogenizes the contract form and thus provides a microfoundation for
considering only loglinear contracts.
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contract is:

ln c1 =
r1
3
+ �1;

ln c2 =
r1
3
+
r2
2
+ �2;

ln c3 =
r1
3
+
r2
2
+
r3
1
+ �3;

where �t =
Pt

s=1 ks. An increase in r1 leads to a permanent increase in log consumption �it

rises by r1
3
in all future periods. In addition, the sensitivity @ut=@at increases over time, from

1=3 to 1=2 to 1=1. The total lifetime reward for e¤ort @Ut=@at is a constant 1 in all periods.

We now consider T = 5, so that the CEO lives after retirement. The contract is now:

ln c1 =
r1
5
+ �1; (23)

ln c2 =
r1
5
+
r2
4
+ �2;

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3;

ln c4 =
r1
5
+
r2
4
+
r3
3
+ �4;

ln c5 =
r1
5
+
r2
4
+
r3
3
+ �5:

Since the CEO takes no action from t = 4, his pay does not depend on r4 or r5. However, it

depends on r1, r2 and r3 as his earlier e¤orts a¤ect his wealth, from which he consumes.

C. Implementation: the Dynamic Incentive Account

The contract derived in Section B can be implemented in at least two ways. First, it can be

implemented using purely �ow-based pay: the principal simply pays the agent the amount ct
given by Theorem 1. Second, it can be implemented using a wealth-based account, as described

in Proposition 1 below.

Proposition 1 (Contract Implementation via a Dynamic Incentive Account). In a �nite-

horizon model, the contract in Theorem 1 can be implemented as follows. The present value of

the CEO�s expected pay is escrowed into a �Dynamic Incentive Account� (�DIA�) at the start

of t = 1.15 A proportion �1 is invested in the �rm�s stock and the remainder in interest-bearing

cash. At the start of each subsequent period t, the DIA is rebalanced so that the proportion

invested in the �rm�s stock is �t. A deterministic fraction �t vests at the end of each period and

15If the CEO has any initial wealth, it is also placed in the DIA. In reality, managers of start-ups often
co-invest in their �rm. Note that the stock pays the �rm�s actual return. As noted in footnote 6, rt is not the
�rm�s actual return, but the actual return plus a constant. This does not a¤ect the implementability with stock
because it only changes the constant kt, which rises by �t(a� �R+ lnE [e�t ]).
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can be withdrawn for consumption. The vesting fraction is given by:

�t = ct=At = 1=Et

"
TX
s=t

e�R(s�t)e
Ps
n=t+1 �nrn+kn

#
;

where At = Et

hPT
s=t e

�R(s�t)cs

i
is the agent�s wealth, i.e., the present value of future pay.

(i) If private saving is impossible and a�t = a� 8 t, �t has a particularly simple form and is

given by �t = (1� �) =
�
1� �T�t+1

�
.

(ii) In an in�nite-horizon model in which private saving is possible, a�t = a� 8t, and noise �t
is i.i.d., the contract can be implemented by a DIA with �t = � = 1��E

�
e��
�
E
�
e���

�
< 1��,

as long as � > 0.

The rebalancing of the DIA ensures that �t of the agent�s wealth is invested in stock at all

time, so that his percent-percent incentives equal �t. This rebalancing addresses a common

problem of options: if �rm value declines, their delta and thus incentive e¤ect is reduced. Un-

rebalanced shares su¤er a similar problem, even though their delta is 1 regardless of �rm value.

The relevant measure of incentives is not the delta of the CEO�s portfolio (which represents

dollar-dollar incentives) but the CEO�s equity as a fraction of his wealth (percent-percent in-

centives). When the stock price falls, this fraction, and thus the CEO�s incentives, are reduced

�intuitively, when the �rm becomes smaller, e¤ort has a smaller dollar impact (given a mul-

tiplicative production function) and so a greater dollar value of stock is necessary to preserve

e¤ort incentives.

The DIA addresses this problem by exchanging stock for cash, to maintain the fraction at

�t. Importantly, the additional stock is accompanied by a reduction in cash �it is not given for

free. This addresses a major concern with repricing options after negative returns to restore

incentives �the CEO is rewarded for failure.16 On the other hand, if the share price rises, the

stock fraction grows. Therefore, some shares can be sold for cash, reducing the CEO�s risk,

without incentives falling below �t. Indeed, Fahlenbrach and Stulz (2009) �nd that decreases

in CEO ownership typically follow good performance.17 Core and Larcker (2002) study stock

ownership guidelines, whereby boards set minimum requirements for executive shareholdings.

In 93% of cases, the requirements relate to the value of shares as a multiple of salary: consistent

with our model, this relationship involves rebalancing (giving additional stock after the price

has fallen to maintain a constant multiple) and implies targeting of percent-percent incentives.

The idea of rebalancing incentive portfolios is similar to the widespread practice of rebalancing

investment portfolios: both are ways of maintaining desired weights in response to stock price

changes.

16Achraya, John, and Sundaram (2000) show that the cost of rewarding failure may be outweighed by the
bene�t of reincentivization, and so repricing options can be optimal. The rebalancing in the DIA achieves the
bene�t of reincentivization without the cost of rewarding failure.
17Fahlenbrach and Stulz (2009) measure CEO ownership by the percentage of shares outstanding (dollar-

dollar incentives), rather than percent-percent incentives �t. Thus, ownership must fall (rise) with good (bad)
performance to keep �t constant.
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The DIA thus features dynamic rebalancing to ensure that the EF constraint is satis�ed in

the current period. This rebalancing is state-dependent: if the stock price rises (falls), stock is

sold (bought) for cash. The second key feature of the DIA is gradual vesting. This vesting is

time-dependent: regardless of the account�s value, the CEO can only withdraw a percentage �t
in each period for consumption. The fraction �t is history-independent. This gradual vesting

has two roles. First, it achieves consumption smoothing. Second, it ensures that the EF

constraint is satis�ed in future periods, by guaranteeing that the CEO has su¢ cient wealth in

the account for the principal to �play with�so that she can achieve the required equity stake by

rebalancing this wealth. If the CEO is allowed to fully withdraw his wealth from the account,

his wealth would be outside the principal�s control and so she would not be able to rebalance it.

This motivation exists during the CEO�s employment only �the account fully vests in period

L. The CEO is not exposed to returns after period L as he cannot a¤ect them and so any

exposure would merely subject him to unnecessary risk. Note that this motivation for gradual

vesting contrasts existing verbal arguments based on deterring myopic actions (e.g., Bebchuk

and Fried (2004), Holmstrom (2005), Bhagat and Romano (2009)). While we show in Section

IV that allowing for such actions provides an additional case for gradual vesting, the core model

demonstrates that gradual vesting is optimal even if short-termism is not possible.

Moreover, in contrast to the above verbal arguments on the vesting horizon, Proposition

1 explicitly solves for the optimal vesting rate in a number of benchmark cases. This al-

lows us to analyze the economic forces that a¤ect the vesting rate. If private saving is fea-

sible and the model horizon is in�nite, part (i) specializes to � = 1 � �. Thus, the vest-

ing fraction is time-independent, just like the contract sensitivity �t. If the horizon is �nite,

�t = (1� �) =
�
1� �T�t+1

�
and is increasing over time. This is intuitive: since the CEO has

fewer periods over which to enjoy his wealth, he should consume a greater percentage in later

periods. Part (ii) shows that, in an in�nite-horizon model where private saving is possible, we

have � < 1� �. The agent would like not to hold stock as it carries a zero risk premium, but is
forced to invest a proportion �. He thus wishes to save to insure himself against this risk. To

remove these incentives, we have � < 1� � so that the account grows faster than it vests, thus
providing automatic saving. In both (i) and (ii), the vesting fraction increases when the CEO

is more impatient (i.e., � is lower), as is intuitive.

One aspect of a wealth-based implementation that we do not model explicitly is the funding

of the DIA by the �rm. In the simplest case of Proposition 1, the NPV of the CEO�s future salary

is placed in the account when he is initially appointed. Alternatively, the �rm may smooth out

these contributions over time by funding the account gradually. In addition, the DIA (regardless

of how it is funded) represents only one implementation of the contract. Other implementations

are possible: rather than setting up an account and rebalancing, the principal can simply pay

the agent ct in each period, i.e., implement the contract with purely �ow compensation. The

DIA implementation highlights the economic interpretation of such a payment scheme: it has

the same e¤ect as if the NPV of the CEO�s future pay was escrowed, rebalanced and gradually

vested. The interest in showing that the contract can be implemented via a wealth-based
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account is that this allows consumption to be history-dependent, without new �ows of pay

having to depend on past returns in a complex manner, as discussed in the Introduction.

III. Generalization and Justi�cation

This section is divided as follows. Section A generalizes our contract to all CRRA utility

functions and autocorrelated noise, and shows that the local EF constraint must bind. Section B

derives su¢ cient conditions for the contract to be fully incentive compatible (i.e., deters global

deviations) and Section C proves that, if the �rm is su¢ ciently large, the optimal contract

indeed involves a deterministic e¤ort level �the contract requires at = �a after every history.

Section D discusses the role played by each of the assumptions in generating the model�s key

results.

A. General CRRA Utility and Autocorrelated Signals

The core model assumes that the signal rt was the �rm�s stock return and so it is reasonable

to assume the noises �t are uncorrelated. However, in private �rms, there is no stock return;

for some public �rms, the stock is illiquid and thus an inaccurate measure of performance.

Therefore, alternative signals of e¤ort must be used such as pro�ts. Unlike stock returns, shocks

to pro�ts may be serially correlated. This subsection extends the model to such a case. We

assume that �t follows an AR(1) process with autoregressive parameter �, i.e., �t = ��t�1 + "t;

� 2 [0; 1]; where "t are independent and bounded above and below respectively by "t and "t.
We also now allow for a general CRRA utility function. Note that for  6= 1, the IEE is not

valid if private saving is impossible, so we only consider the case where the PS constraint is

imposed. We de�ne Jt = �te�(1�)g(a
�
t ) for t � L and Jt = �t otherwise. The optimal contract

is given in Theorem 2 below. Even though the principal must rule out private saving, she still

has freedom in the choice of the contract (and so the optimization problem remains complex) if

she wishes to implement a boundary action (Theorem 4 gives su¢ cient conditions under which

a boundary action is optimal). With a boundary action, the principal could use a contract with

a greater sensitivity than necessary. Theorem 2 proves that this contract is suboptimal.

Theorem 2 (General CRRA utility, autocorrelated noise, with the PS constraint.) The cheap-

est contract that satis�es the local constraints and implements at = a�t 8 t is as follows. In each
period t, the CEO is paid ct which satis�es:

ln ct = ln c0 +

tX
s=1

�s (rs � �rs�1) +
tX

s=1

ks; (24)
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where �s and ks are constants and r0 = 0. The sensitivity �s is given by:

�s =

8><>:
Js(g0(a�s)���s+1)PT

m=s Jm
Qm
n=s+1 Es

"
e
(1�)[�n("n+a�n��a�n�1)+kn]

# + ��s+1 for s � L;

0 for s > L:

(25)

The constant ks is given by:

ks = R + ln �� (1� )g(a�s)1s=L+1 + lnE
�
e��s("s+a

�
s��a�s�1)

�
for s � T: (26)

The initial condition c0 is chosen to give the agent his reservation utility u.

If L = T = 1 and a�t = a� 8t, the sensitivity (25) simpli�es to a constant �s = �, where

� is given by (A.11) in Appendix A. In the limit of small time intervals, and when � = 0, we

have:

� =
1�

q
1� 2( � 1)�2g0(a�)2 (�1)R�ln �



( � 1)�2g0(a�) (27)

and ks = k = (R + ln �) = � �a� � �2�2=2.

Equation (24) shows that moving from log to general CRRA utility but retaining indepen-

dent noise has little e¤ect on the functional form of the optimal contract, which remains in

closed-form and independent of the noise distribution. Similarly,  only a¤ects the speci�c

values of � and k rather than the functional form. The time trend of the contract sensitivity

and the implementation via the DIA remain the same. The di¤erence is that the parameters

� and k are somewhat more complex. To understand the economic forces that determine �,

consider the benchmark case where � = 0, L = T; and a�t = a�, 8t. Then, the sensitivity (25)
becomes

�t =
Jtc

1�
tPT

s=tE
�
Jsc

1�
s

�g0 (a�) ; (28)

which stems directly from the EF condition. Under plausible parameterizations of the model

(e.g., small time intervals, or ln � + R is close to 0) when  � 1, the sensitivity increases over
time up to �T = g0 (a�) and is steeper if the agent is more risk averse (higher ) and less

patient (lower �), and stock return volatility is higher. (The full derivations are in Appendix

C.) Intuitively, these changes decrease the utility the agent derives from future consumption,PT
s=tE [Jsc

1�
s ], which is in the denominator of (28). Since future rewards are insu¢ cient to

induce e¤ort, the CEO must be given a higher sensitivity to current consumption.

Equation (24) shows that, with autocorrelated signals, the optimal contract links the per-

centage change in CEO pay in period t to innovations in the signal (rt � �rt�1) between t and

t� 1, rather than the absolute signal in period t. This is intuitive: since good luck (i.e., a posi-
tive shock) in the last period carries over to the current period, the contract should control for

the last period�s signal to avoid paying the CEO for luck. Similarly, if there is an industry-wide

component to rt, the optimal contract will �lter out this component, just as it �lters out �rt�1.
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Thus, relative performance evaluation can be combined with the contract.

B. Global Constraints

We have thus far derived the best contract that satis�es the local constraints. We now verify

that this contract also satis�es the global constraints, i.e., the agent will not undertake global

deviations. The following analysis derives a su¢ cient condition on g to guarantee this.

The contract in Theorem 2 pays the agent an income yt, given by:

ln yt = ln c0 +
tX

s=1

�s(as + �s � �(as�1 + �s�1)) +
tX

s=1

ks: (29)

The following Theorem states that if the cost function g is su¢ ciently convex and the target

e¤ort level does not rise too rapidly over time, the CEO has no pro�table global deviation.

Theorem 3 (No global deviations are pro�table.) Consider the maximization problem:

max
at;ct adapted

E

"
TX
t=1

�tu
�
cte

�g(at)
�#

(30)

with
PT

t=1 e
�rt (yt � ct) � 0 and yt satisfying (29). If function g is su¢ ciently convex (i.e.,

infa g
00 (a) is su¢ ciently large) and �t � ��t+1 � 0 8t, the solution of this problem is ct � yt;

t � T; and at = a�t ; 8t. There is no global deviation from the recommended policy that makes

the agent better o¤.

The role of the condition on the convexity of the cost function is standard. The intuition for

the condition that �t � ��t+1 � 0 8 t is that, if the target e¤ort level (and thus contract slope
�t) rises rapidly over time, the agent will shirk in period t. This will reduce the period t return

rt and thus his consumption ct, but increase his wage in all future periods �if noise is highly

autocorrelated (� is high), then the combination of a low rt and high returns in future periods

will fool the principal into thinking that the agent exerted higher e¤ort in periods t+1 onwards

than he actually did. Formally, the problem becomes non-concave. Thus, we require either

low autocorrelation in the noise (low �) or the target action not to rise too rapidly over time.

Indeed, in Theorem 4 we show that, if �rm size X is su¢ ciently large, the optimal contract

involves a constant e¤ort level.

The proof, in the Appendix, may be of general methodological interest. It involves three

steps. First, we reparameterize the agent�s utility from a function of consumption and e¤ort

to one of consumption and leisure, where the new variable, leisure, is de�ned so that utility is

jointly concave in both arguments. Second, we construct an �upper-linearization�function: we

create a surrogate agent with a linear state-dependent utility. Third, we prove that any global

deviation by the surrogate agent weakly reduces his utility. It is automatic that there is no
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motive to save under linear utility. Turning to e¤ort, if the cost of e¤ort g is su¢ ciently convex,18

the NPV of the agent�s income is concave in leisure. Since utility is linear in consumption, and

consumption equals income, utility is concave in leisure and so there is no pro�table deviation.

Since our original agent�s utility function is concave, his utility is the same as the surrogate

agent�s under the recommended policy, and weakly lower under any other policy. Thus, any

deviation also reduces the original agent�s utility. The third step is a Lemma that shows that

the NPV of income is a concave function of actions under suitable reparameterization. It thus

may have broader applicability to other agency theories, allowing the use of the �rst-order

approach to signi�cantly simplify the problem.

C. The Optimality of High E¤ort

This section derives conditions under which the principal wishes to implement the boundary

e¤ort level at = �a in every period and after every history. We refer to a as �high e¤ort�, to use

similar terminology to models with discrete e¤ort levels (e.g., high, medium, low) in which the

high e¤ort level is typically optimal.

Theorem 4 (High e¤ort is optimal if the �rm is su¢ ciently large.) Assume that inf�2(�;�) f (�) >

0 and supa2(a;a) g
00 (a) =g02 (a) <1, where f is the probability density of �. There exists X� such

that if baseline �rm size X > X�, implementing at = �a is optimal.

The intuition is as follows. For any alternative contract satisfying the incentive constraints,

we compare the bene�ts and costs of moving to a high e¤ort contract. The bene�ts are multi-

plicative in �rm size. The costs comprise the direct disutility from working, the risk premium

required to compensate the CEO for a variable contract, and the change in CEO�s informa-

tional rent (which are all a function of the CEO�s wage). Since the CEO�s wage is substantially

smaller than �rm size, the bene�ts of high e¤ort outweigh the costs. In practice, a boundary

e¤ort level arises because there is a limit to the number of productive activities the CEO can

undertake to bene�t the principal. Under the literal interpretation of a as e¤ort, there is a

�nite number of positive-NPV projects available and a limit to the number of hours a day the

CEO can work while remaining productive. Under the interpretation of a as rent extraction, a

re�ects zero stealing.

The complexity in the proof lies in deriving an upper bound on the informational rent

(which stems from the CEO�s private information about the noise �) and the risk imposed

on the CEO from incentives (which depends on the CEO�s ability to self-insure via privately

saving). Any change in the implemented e¤ort level requires adjusting the wage not only in a

particular period for the whole range of noises, but also across time periods to deter private

saving. Implementing at = �a in period t requires the time-t contract to change. Moreover, the

18See Dittmann and Yu (2010) for a similar convexity condition to ensure that the local optimum is globally
optimal. They consider a one-period model where private saving is not possible, but the CEO chooses risk as
well as e¤ort.
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change in the time-t contract has a knock-on e¤ect on the time-(t� 1) contract, which must
change to deter saving between time t� 1 and time t. The change in the time-(t� 1) contract
impacts the time-(t� 2) contract, and so on: due to private saving, the contract adjustments
�resonate�across all time periods. It is this non-separability that signi�cantly complicates the

problem. These complications are absent in EG, who derive a similar result in a single-period

model.

This above result may be of use for future theories by simplifying the contracting problem.

Grossman and Hart (1983) solve the one-period contracting problem in two stages: they �nd

the cheapest contract that implements a given e¤ort level, and then �nd the optimal e¤ort

level. Solving both stages is typically highly complex; indeed, Grossman and Hart can only do

so numerically. The idea that the bene�ts of e¤ort are orders of magnitude higher than the

costs simpli�es the problem �since high e¤ort is optimal, the second stage of the contracting

problem is solved and so the analysis can focus exclusively on the �rst stage.

D. Discussion of Modeling Assumptions

This subsection discusses which of the model�s assumptions are necessary for its key results.

We view the paper�s main contributions as threefold:

E. (Economic): Economic insights on the forces that drive the optimal contract, e.g., how

the sensitivity �t and level kt of pay change over time and depend on the environment; how

the CEO remains exposed to �rm returns after retirement if short-termism is possible.

T. (Tractability): Achieving a simple, closed-form optimal contract in a dynamic setting

with private saving and short-termism.

I. (Implementation): The contract can be implemented with a wealth-based account, with

state-dependent rebalancing and time-dependent vesting (I1). The account contains the

standard instruments of stock and cash (I2).

Note that (E) and (I) are distinct implications. The contract in Theorem 1 can always

be implemented with �ow pay, i.e., paying the CEO an amount ct in every period, and all the

economic implications of the contract would follow. (I) refers to only one simple implementation.

We now discuss the roles played by the main assumptions in generating the above results:

A1. CRRA utility and multiplicative preferences. We consider these assumptions together as

they are closely intertwined � the former (latter) means that an agent�s allocation to

risky assets (leisure) is proportional to his wage. EG show that these assumptions are

not necessary for a simple contract if there is only terminal consumption. However, these

assumptions are important in a model with intermediate consumption as they lead to

multiplicative separability and key variables scaling with the wage. To understand the

importance of multiplicative preferences for (T), assume L = T and consider the �nal
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period L. With multiplicative preferences, the incentive measure is the elasticity of pay

to �rm value. This elasticity must be �L, irrespective of the level of pay in period L

�and is thus independent of the history of past returns. The principal can thus defer

the rewards for performance in prior periods (to smooth consumption) without distorting

e¤ort incentives. Deferral a¤ects the level of pay in period L but not e¤ort incentives, as

long as the elasticity remains �L.

Multiplicative preferences also mean that the whole promised wealth of the agent (i.e., the

NPV of all future consumptions) in period 1 is multiplicative in c1(r1), promised wealth

at period 2 conditional on r1 is multiplicative in c2(r1; r2)19, and so on. In other words,

a shock to r1 has a multiplicative e¤ect on consumption in all future periods. Moreover,

when we also have CRRA utility, this multiplicative e¤ect is the same in every future

period, for optimal risk-sharing. If r1 falls by 2%; log consumption falls by C � 2% in the
current and all future periods, where C is a constant. Thus, rewards for performance are

smoothed in a simple manner, and this smoothing is also independent of the history of

past returns �for example, the e¤ect of r2 on c2; : : :; cT is independent of r1.20 Together,

both assumptions mean that, although consumption is history-dependent, �t is history-

independent and so the dynamic contract is a simple extension of the static contract.

The assumptions also allow a wealth-based implementation, i.e., (I1). Since wealth is a

multiple of consumption, consumption is a fraction of wealth. We can therefore implement

the contract by investing the CEO�s wealth into instruments that yield c1(r1) ( = �1A1)

in the �rst period, allowing him to consume a fraction �1 of his promised wealth, then

rebalancing by investing the remainder of his wealth in instruments that yield c2(r1; r2) as

a function of r2, and so on. The thresholds to which the account must be rebalanced �t are

history-independent, since the elasticity is history-independent. Furthermore, since the

return in a particular period has the same e¤ect on all future consumptions, the ratio of

current consumption to the sum of all future consumptions (i.e., wealth) is a constant and

is independent of past shocks. Thus, the CEO�s promised wealth is a su¢ cient statistic for

his current consumption �the sequence of past returns that led to the CEO accumulating

this level of wealth is irrelevant. Since consumption depends on current wealth alone, the

vesting fraction �t is history-independent.21

Multiplicative separability is not necessary for (T) �additive separability with constant

19We require c2 (r1; r2) = c1 (r1) f (2) (r2), c3(r1; r2; r3) = c2 (r1; r2) f (3) (r3) etc., i.e. multiplicative separabil-
ity.
20With multiplicative preferences but without CRRA, the smoothing is complex and history-dependent.

Consider a 2-period model with u(c; a) = ech(a). We have c2(r1; r2) = B(r1)e
�2r2 , and PS yields ec1h(a) =

E1

h
eB(r1)e

�2r2h(a)
i
. Even though r1 has a multiplicative e¤ect on c2, solving for the magnitude of this e¤ect

B(r1) is highly complex.
21One could argue that it is always possible to implement a contract with rebalancing and vesting, where the

vesting fraction �t and rebalancing target �t are complex functions of the past history, and so (I1) does not hinge
on our assumptions (A1). However, such an implementation would be complex; the key role of assumptions
(A1) is to allow �t and �t to be history-independent.
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absolute risk aversion (CARA) utility and additive preferences would also work (see Ap-

pendix E); the above arguments apply but with dollar amounts replacing percentage

amounts. However, the model would predict that dollar-percent incentives are the rel-

evant measure and independent of pay and �rm size (contrary to evidence, e.g., Jensen

and Murphy (1990)). Moreover, such a model would not permit a wealth-based imple-

mentation, i.e., (I1). With multiplicative preferences, the relevant measure of incentives

is percent-percent incentives, which equals the fraction of wealth that is in stock. Re-

gardless of the level of wealth, it can always be rebalanced to ensure that the fraction

is at the required level. By contrast, dollar-percent incentives equal the dollar value of

equity. If the value of the account falls below the required dollar equity holding, there is

no way that the account can be rebalanced to restore the CEO�s equity holdings to this

threshold, since cash cannot be negative owing to limited liability. Put di¤erently, if a fall

in returns reduces future consumption by a �xed dollar amount, after su¢ ciently many

periods of low returns, the required future consumption would be negative.

Multiplicative preferences are not necessary for the qualitative implications in (E) as

the economic forces driving them do not hinge on the speci�c preference formulation.

In any model with myopia, the CEO must remain tied to �rm returns after he retires.

Consumption smoothing motives leads � to increase over time, and the need to save for

the agent causes k to rise over time.

A2. Multiplicative production function. This assumption is used in the proof of the optimality

of at = a in Theorem 4. It is a su¢ cient, rather than necessary condition for this result �as

long as the dollar bene�ts of e¤ort are increasing in (although not necessarily proportional

to) �rm size, at = a will be optimal if the �rm is su¢ ciently large. Moreover, as discussed

at the end of Section C, Theorem 4 is not needed if we wish to focus on the cheapest

contract to implement a given target action. The multiplicative production function is

only necessary to implement the contract using stocks, i.e., (I2). With a multiplicative

production function, the CEO�s action a¤ects the �rm�s return, and stocks are sensitive

to the �rm�s return.

A3. Noise-before-action timing. This timing assumption was convenient for the derivation of

the contract by forcing the EF constraints to hold state-by-state. With reversed �action-

before-noise� timing, the contract becomes complex even in a static model (see, e.g.,

Grossman and Hart (1983)). In particular, the solution typically does not feature a

constant elasticity of pay to �rm value. However, the paper�s other insights, aside from

(I2), remain valid. We sketch the general argument using a simple example.

Consider a one-period problem, in which the principal minimizes the cost of providing

incentives to exert e¤ort a, with log utility and �action-before-noise�timing. First, it can

be shown that, with log utility, if c(r) solves the problem when the agent�s expected utility

is U , then for any z > 0, z � c(r) solves the problem with expected utility U + ln z. In
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other words, to deliver a higher expected utility, the principal must scale up all payments

by the same �xed constant, regardless of the realized returns. The timing assumption

only matters for the actual form of c (r) (with �noise-before-action� timing, c(r) has a

particularly simple form: it is a multiple of eCr for some constant C; with �action-before-

noise�timing, c (r) a multiple of eb(r) for some general function b) �but the above �scaling�

result holds regardless of the timing.

Moving to T = L = 2, the above claim means that the return at t = 2 a¤ects pay at t = 2

multiplicatively. Therefore, the contract must have the form:

c2(r1; r2) = eb1(r1)eb2(r2);

for b2 � b and some function b1. The PS constraint yields:

c1(r1) = eb1(r1)�k;

for the constant k = lnE[e�b2(r2)], analogous to (11). Thus, c2(r1; r2) and c1(r1) are

a¤ected by r1 in the same manner. Finally, b1 is the solution to a static problem where

the CEO�s utility of consumption is 2 ln c:

In sum, the two-period dynamic problem with private saving can be reduced to two static

problems: solving for functions b1 and b2. Thus, while the static problem is complex,

the dynamic model represents a simple extension: each static problem can be solved

independently without complex history-dependence. Thus, much of (T) is preserved.

Moreover, promised wealth at period 2 conditional on r1 is multiplicative in c2(r1; r2) and

so on, and so (I1) is preserved. At t = 1, the principal must invest the funds into an

instrument that yields eb1(r1). At t = 2, regardless of r1, she must invest the funds into

an instrument that yields eb2(r2). With noise-before-action timing, bn (r) = �n � r so the

instrument is a combination of cash and stock; with reversed timing, bn (r) is not linear

in r and so in general the instrument will not be cash and stock, so we do not have (I2).

Appendix B shows that the contract retains the same form in continuous time, where the

noise and action are simultaneous.

IV. Short-Termism

We now study how our basic contract changes when the agent can in�ate the �rm�s returns,

focusing on the log utility case for simplicity. Following on from Theorem 4, we assume that a�t =

a 8 t. Short-termism is broadly de�ned to encompass any action that increases current returns at
the expense of future returns. This de�nition includes real decisions such as scrapping positive-

NPV investments (see, e.g., Stein (1988)) or taking negative-NPV projects that generate an

immediate return but have a downside that may not manifest for several years (such as sub-
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prime lending), earnings management, and accounting manipulation.

We model short-termism in the following manner. In each period t � L, at the same time as

taking action at, the agent also chooses a vector of myopic actionsmt = fmt;1(rt+1); : : :;mt;M(rt+M)g.
A single myopic activity mt;i(rt+i) 2 [0;m] (for an upper bound m > 0) changes the returns

from rs = as + �s to

r0t = rt + �i (E[mt;i(rt+i)]) for s = t;

r0t+i = rt+i �mt;i(rt+i) for s = t+ i;

r0s = rs for s 6= t; t+ i:

Short-termism raises returns in period t by �i (E[mt;i(rt+i)]) (the function �i (�) will be speci�ed
shortly) and decreases them in period t + i by mt;i(rt+i). This speci�cation allows the CEO

to engage in myopia state-by-state: the negative e¤ect of short-termism mt;i depends on the

realized return rt+i and thus the state of nature �t+i. Thus, the CEO can choose the states

in which the costs of myopia are su¤ered. Giving the agent great freedom to in�ate earnings

restricts the set of admissible contracts that the principal can write to deter myopia, and thus

leads to a simple solution to the contracting problem. This is similar to how specifying the

noise before the action leads to tractability in the core model, as discussed in Section I. In

practice, CEOs can engage in short-termism by scrapping certain investments that pay o¤ only

in certain states of the world �for example, investing to increase the safety of a factory pays

o¤ if there is a disaster; expanding the capacity of a factory pays o¤ only if demand turns out

to be high.

We have 1 � i � M , where i is the �release lag� of the myopic activity: the number of

periods before its negative consequences become evident. For example, if the agent manipulates

accounting to delay the realization of expenses for �ve years, i = 5. M � ��L is the maximum
possible release lag. The function �i (E[mt;i(rt+i)]) captures the e¢ ciency of earnings in�ation:

a greater �i (�) means that a given future reduction in returns E [mt;i(rt+i)] translates into a

greater boost today. We assume �i (0) = 0, �0i > 0, �
00
i < 0 and

qi � �0i (0) <
e��Mm

E [e�]
; (31)

so that 0 < qi < 1. This assumption is su¢ cient to guarantee that all myopic actions are

ine¢ cient and create a �rst-order loss on �rm value by reducing the expected terminal dividend,

as proven in Appendix E.
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A. Local Constraint

If the agent engages in a small myopic action mt;i(rt+i) at time t, his utility changes to the

leading order by

Et

�
@U

@rt

�
qiEt [mt;i (ert+i)] + Et

�
�mt;i(ert+i)Et � @U

@rt+i
j ert+i�� :

We require that, for every mt;i(rt+i) � 0, the change in utility is nonnegative, i.e.,

Et

�
@U

@rt

�
qiEt [mt;i (ert+i)] + Et

�
�mt;i(ert+i)Et � @U

@rt+i
j ert+i�� � 0; i:e:;

Et

�
@U

@rt

�
qi
R
mt;i (rt+i) f(rt+i)drt+i �

R
mt;i (rt+i) f(rt+i)Et

�
@U

@rt+i
j ert+i = rt+i

�
drt+i � 0;

This leads to the following No Myopia (NM) constraint:

NM : 8rt+i; Et
�
@U

@rt

�
qi � Et

�
@U

@rt+i
j ert+i = rt+i

�
� 0: (32)

To interpret the conditioning, consider the case i = 3. The second expectation is conditioned

on (rs)s�t and rt+3, but not on rt+1 nor rt+2.

B. The Contract

There are now three local constraints: EF, PS and NM. We seek the cheapest contract that

satis�es these three constraints, i.e., induces zero myopia, zero private saving and high e¤ort.

The intuition behind implementing zero myopia is similar to that behind high e¤ort as proven

in Theorem 4: the bene�ts of preventing short-termism are multiplicative in �rm size and thus

orders of magnitude greater than the costs, which are a function of the CEO�s salary. Relatedly,

using a similar argument to Theorem 3, we conjecture that the contract that satis�es the three

local constraints will also satisfy the global constraints if the function �i (�) (which captures
the e¢ ciency of in�ation) is su¢ ciently concave, analogous to the su¢ cient condition on the

convexity of the cost of e¤ort g (�) in Theorem 3. Given the high complexity of the proofs of

Theorems 3 and 4, we do not provide analogous proofs here.

Proposition 2 below gives the cheapest contract that satis�es the three local constraints.

Proposition 2 (Log utility, myopia possible.) The cheapest contract that satis�es the local

constraints for high e¤ort, zero private saving and zero myopia is as follows. In each period t,

the CEO is paid ct which satis�es:

ln ct = ln c0 +

tX
s=1

�srs +

tX
s=1

ks;
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where �s and ks are constants. The sensitivity �s is given by:

�s =

(
�s

1+�+:::+�T�s for s � L+M;

0 for s > L+M;
(33)

with �1 = g0(�a). For s > 1, �s is de�ned recursively as:

�s =

8<: max1�i�M;i<s

n
g0(�a); qi

�i
�s�i

o
for s � L;

maxs�L�i�M;i<s

n
qi
�i
�s�i

o
for L < s � L+M:

If private saving is impossible, the constant ks is given by:

ks = R + ln �� lnE[e�s(�a+�)]:

If private saving is possible, ks is given by:

ks = R + ln �+ lnE[e��s(�a+�)]:

The initial condition c0 is chosen to give the agent his reservation utility u:

From (33), the possibility of short-termism has three e¤ects on the contract sensitivity,

which must change to prevent such actions. First, in the core model, there are two motivations

for time-dependent vesting: consumption smoothing and the need to maintain su¢ cient equity

in the DIA to satisfy the EF constraints in future periods. These motivations exist during the

CEO�s employment only and full vesting occurs in period L. Where myopia is possible, time-

dependent vesting has an additional motivation �to satisfy the NM constraint in the current

period, by preventing the CEO from in�ating the current stock price and immediately cashing

out. This motivation exists both during the CEO�s employment and after retirement. Thus,

gradual vesting continues after retirement and the account only fully vests in period L +M ,

since myopia allows the CEO to a¤ect �rm returns up to period L+M . While we are unaware

of any large-scale studies, anecdotal evidence is consistent with such lock-ups. The severance

agreement of Stanley O�Neal (ex-CEO of Merrill Lynch) states that: �the unvested restricted

stock and restricted stock units will continue to vest in accordance with their original schedules.�

During employment, equity grants are often restricted in practice: Kole (1997) �nds a typical

vesting horizon of 2-3 years. A number of �rms are lengthening their horizons in the aftermath

of the �nancial crisis: many commentators argued that short vesting periods in certain �rms

encouraged myopia in the crisis.22

22For example, Angelo Mozilo, the former CEO of Countrywide, sold over $100m of stock prior to his �rm�s
collapse; Bebchuk, Cohen, and Spamann (2010) estimate that top management at Bear Stearns and Lehman
earned $1.4bn and $1bn respectively from cash bonuses and equity sales during 2000-8; a November 20, 2008
Wall Street Journal article entitled �Before the Bust, These CEOs Took Money O¤ the Table�provides further
examples. Johnson, Ryan, and Tian (2009) �nd a positive correlation between corporate fraud and unrestricted
(i.e., immediately vesting) stock compensation.
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Second, the contract sensitivity �t is higher in each period, because the contract must now

satisfy NM as well as EF. Third, �t trends upwards more rapidly over time. Short-termism

allows the CEO to increase the time-t return and thus his time-t consumption. Even though

the return at time t+ it will be lower, the e¤ect on the CEO�s utility is discounted. Therefore,

an increasing sensitivity is necessary to deter myopia, so that he loses more dollars in the future

than he gains today to o¤set the e¤ect of discounting. For example, in an in�nite-horizon model

where myopia is impossible, (21) shows that the sensitivity is constant. Equation (33) shows

that the sensitivity is increasing over time if short-termism is possible.

The magnitude of the above three changes depends on the CEO�s incentives to in�ate

earnings, which are determined by two forces. The bene�t to the CEO of short-termism is that

he boosts current returns and thus pay, which outweighs the negative e¤ect on future returns

owing to discounting. The discount rate � determines the size of this bene�t. The cost is that

myopia is ine¢ cient, as the current boost to returns exceeds the future cost. For local myopic

actions, the parameter qi determines the size of the cost. Overall, when qi is higher and �

is lower, the CEO�s incentives to in�ate earnings are greater; thus, the CEO is given greater

exposure to returns after retirement, and the contract sensitivity is higher in every period and

increases more rapidly over time.

Moreover, all of the above changes to the sensitivity �t also a¤ect the constant term kt.

Thus, if private saving is possible, the increase in �t causes the level of the contract to grow

more rapidly over time, providing automatic saving for the agent. While the possibility of

myopia only has a direct e¤ect on the sensitivity of pay, this spills over into an indirect e¤ect

on the level of pay.

A speci�c example conveys the economics of the contract more clearly. Let qi = Qi for some

Q 2 (0; 1), i.e., a myopic action hidden for i periods increases current returns by Qi, a factor

that decreases at a constant rate Q per year of hiding. This natural benchmark allows for the

slopes �t in (33) to be de�ned explicitly rather than recursively. These are given as follows.

Corollary 2 Suppose that Q 2 (0; 1); qi = Qi. If Q < �, then �t = g0 (a) for t � L and

�t = g0 (a) (Q=�)t�L for L < t � L+M . If Q � �, then �t = g0 (a) (Q=�)t�1 for t � L+M .

We consider an in�nite horizon model (T = L =1) for comparison with the sensitivity in
the absence of myopia, �t = (1� �) g0 (a) from (21). �t depends on whether Q 7 �, owing to

the above trade-o¤ arguments. If Q < �, myopia is su¢ ciently ine¢ cient that the bene�t is

less than the cost. Thus, the contract in the core model (equation (21)) is already su¢ cient to

deter short-termism and need not change. If Q > �, the CEO does have incentives to in�ate

earnings under the original contract, and so the sensitivity must increase to

�t = (1� �) (Q=�)t�1 g0 (a) :

The (Q=�)t�1 term demonstrates that the sensitivity is not only greater in every period than

in the core model, but also increasing over time. The more impatient the CEO, the greater the
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incentives to in�ate earnings, and so the greater the required increase in sensitivity over time

to deter myopia. In a �nite horizon model, �t is already increasing if myopia is impossible; the

feasibility of short-termism causes it to rise even faster.

B.1. Numerical Example

We return to the last numerical example from Section III.B.1 to demonstrate the e¤ect of

myopia on the contract. If M = 1, the contract changes from (23) to:

ln c1 =
r1
5
+ �1;

ln c2 =
r1
5
+
r2
4
+ �2;

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3;

ln c4 =
r1
5
+
r2
4
+
r3
3
+
q1r4
2
+ �4;

ln c5 =
r1
5
+
r2
4
+
r3
3
+
q1r4
2
+ �5:

The CEO�s income now depends on r4, otherwise he would have an incentive to boost r3 at

the expense of r4. The sensitivity to r4 depends on the e¢ ciency of earnings in�ation q1; in

the extreme, if q1 = 0, myopia is impossible and so there is no need to expose the CEO to

returns after retirement. The contract is unchanged for t � 3, i.e., for the periods in which

the CEO works. Even under the original contract, there is no incentive to in�ate earnings at

t = 1 or t = 2 because there is no discounting, and so the negative e¤ect of myopia on future

returns reduces the CEO�s lifetime utility by more than the positive e¤ect on current returns

increases it. Appendix D allows for a variable cost of e¤ort and shows that the possibility of

short-termism forces the contract to change in t � L even if there is no discounting.

V. Conclusion

This paper presents a new framework for studying CEO compensation in a fully dynamic

model while retaining tractability. The model allows the CEO to consume in each period,

privately save, and temporarily in�ate returns. The model�s closed-form solutions yield clear

implications for the economic drivers of both the level of pay and the sensitivity of pay to

performance. Pay depends on stock returns in the current and all past periods, and the sen-

sitivity of pay to a given return is constant over time. The relevant measure of incentives is

the percentage change in pay for a percentage change in �rm value. This required elasticity is

constant over time in an in�nite horizon model where short-termism is impossible, and rising

if the horizon is �nite or if short-termism is possible, even in the absence of career concerns.

Deterring myopia also requires the CEO to remain sensitive to �rm returns after retirement.

By contrast, the feasibility of private saving only impacts the level of pay. It augments the rise

in compensation over time, removing the need for the CEO to save himself.
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The optimal contract can be implemented using a mechanism that we call a �Dynamic

Incentive Account�. The CEO�s expected pay is placed into an account, of which a certain

proportion is invested in the �rm�s stock. The account features state-dependent rebalancing to

ensure that, as the stock price changes, the CEO always has su¢ cient incentives to exert e¤ort

in the current period. It also features time-dependent vesting during employment, to ensure

that the CEO exerts e¤ort in future periods, and after retirement to deter myopia.

Our key results are robust to a broad range of settings: general CRRA utility functions,

all noise distributions with interval support, and autocorrelated noise. However, our setup

imposes some limitations, in particular that the CEO remains with the �rm for a �xed period.

Abstracting from imperfect commitment problems allows us to focus on a single source of market

imperfection �moral hazard �and is common in the dynamic moral hazard literature (e.g.,

Lambert (1983), Rogerson (1985), Biais et al. (2007, 2009)). An interesting extension would

be to allow for quits and �rings. As is well-known (e.g., Bolton and Dewatripont (2005)), the

possibility of quitting signi�cantly complicates intertemporal risk-sharing since the agent may

leave if his continuation wealth is low; �rings may provide an additional source of incentives (as

analyzed by DeMarzo and Sannikov (2006) and DeMarzo and Fishman (2007) in a risk-neutral

model).23 We leave those extensions to future research.

23The implementation of the contract via the DIA will involve the CEO forfeiting a portion of the account if
he leaves early. Indeed, such forfeiture provisions are common in practice (see Dahiya and Yermack (2008)).
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A. Proofs

Proof of Theorem 1
This is a direct corollary of Theorem 2.

Proof of Proposition 1
The present value of future pay on the equilibrium path is given byAt = Et

hPT
s=t e

�R(s�t)cs

i
,

where ct = c0e
Pt

s=1�srs+ks . We have At�1 � ct�1 = e�REt�1 [At]. The contract in Theorem 1

implies At = Et�1 [At] e
�trt=Et�1

�
e�trt

�
. Thus,

At = (At�1 � ct�1) e
R e�trt

Et�1 [e�trt ]
:

At is obtained by investing the residual value At�1� ct�1 in a continuously rebalanced portfolio
with a proportion �t in stock and the remainder in interest-bearing cash. ($1 invested at time

t�1 in such an asset yields $eRe�trt=Et�1
�
e�trt

�
, because both stock and cash have an expected

return of R.) This is precisely the implementation via a DIA.

To derive the vesting fractions, we have

�t = ct=At = ct=Et

"
TX
s=t

e�R(s�t)cs

#
(A.1)

= 1=Et

"
TX
s=t

e�R(s�t)e
Ps
n=t+1 �nrn+kn

#
:

In certain benchmark cases these terms collapse into simple expressions:

(i) If private saving is impossible, the IEE gives us that inverse discounted marginal util-

ity ��te�Rtct is a martingale. Thus At = ct
�
1� �T�t

�
= (1� �) which yields �t = ct=At =

(1� �) =
�
1� �T�t+1

�
.

(ii) If private saving is possible and the model horizon is in�nite, the problem is stationary;

given CRRA, the CEO consumes a constant fraction � of his wealth in each period and so

ct = �At. We have:

k = R + ln �+ lnE
�
e��(a

�+�)
�
;

E
�
e�rs+k

�
= E

�
e��
�
eR�E

�
e���

�
= eR��;

where

�� = �E
�
e��
�
E
�
e���

�
.

Hence, for s � t,

Et
�
e�R(s�t)cs

�
= ct�

s�t
�
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and

At = Et

" 1X
s=t

e�R(s�t)cs

#
= Et

" 1X
s=t

�s�t� ct

#
= ct= (1� ��) .

This yields � = ct=At = 1� �E
�
e��
�
E
�
e���

�
as required.

Proof of Theorem 2
Case t > L. For t > L, rt is independent of the CEO�s actions. Since the CEO is strictly

risk averse, ct will depend only on r1; : : :; rL. Therefore either the PS constraint (6) or the IEE

(if  = 1) immediately give

ln ct(r1; : : :; rt) = ln cL(r1; : : :; rL) + �0t; (A.2)

for some constants �0t independent of the returns.

Case t � L: Suppose that for all t0, T � t0 > t, the optimal contract ct0 is such that

ln ct0(r1; : : :; rt0) = B(r1; : : :; rt) + �t0rt0 +

t0�1X
s=t+1

(�s � ��s+1)rs + �t0 ; (A.3)

for some function B, constants �t, and �s as in the Theorem. The PS constraint yields

c�t = eR
Jt+1
Jt

Et
�
c�t+1

�
= Et

�
e��t+1rt+1

�
e�B(r1;:::;rt)+R��t+1+ln Jt+1�ln Jt : (A.4)

We therefore have24

ln ct = B(r1; : : :; rt) + ��t+1rt + �t; (A.5)

for the appropriate constant �t.

The EF constraint requires that in the case when a�t 2 (0; a)

0 2 argmax
"
Et[U(r1; : : :; rt�1; a

�
t + �t + ")]: (A.6)

Since g is di¤erentiable, this yields (5) (see EG, Lemma 6), i.e.,

Jtc
1�
t ��t+1 +

d

d"
B (r1; : : :rt�1; a

�
t + �t + ")

TX
m=t

JmEt
�
c1�m

�
= Jtct

1�g0(a�t ); (A.7)

d

d"
B (r1; : : :rt�1; a

�
t + �t + ") =

Jt (g
0(a�t )� ��t+1)PT

m=t Jm
Qm

n=t+1Et

h
e(1�)[�n("n+a

�
n��a�n�1)+(�n��n�1)]

i := �t � ��t+1:

The second equivalence above follows from the fact that for m > t,

Et
�
c1�m

�
= c1�t Et

h
e(1�)

Pm
n=t+1[�n("n+a�n��a�n�1)+(�n��n�1)]

i
= c1�t

mY
n=t+1

Et

h
e(1�)[�n("n+a

�
n��a�n�1)+(�n��n�1)]

i
:

24Equation (A.5) can also be derived from the IEE if  = 1:
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In the case when a�t = a in an analogous way we get:

d

d"�
B (r1; : : :rt�1; a+ �t + ") � Jt (g

0(a)� ��t+1)PT
m=t Jm

Qm
n=t+1Et

h
e(1�)[�n("n+a

�
n��a�n�1)+(�n��n�1)]

i (A.8)

We now show that (A.8) binds. First, (A.8) implies that for any r0 � r (see EG, Lemma 4)

Bt (r1; : : :rt�1; r
0)�Bt (r1; : : :rt�1; r) � (�t � ��t+1)(r

0 � r); (A.9)

and it can be inductively shown that 0 � �t���t+1 � g0(a): Consider now the contract (c0s)s�T
that coincides with (cs)s�T for s < t, and are as in (A.3) and (A.5) for s � t with B(r1; : : :; rt) =

B(r1; : : :; rt�1) + (�t � ��t+1)rt, where B(r1; : : :; rt�1) is chosen to satisfy

Et�1

"
(c0t )

1�
(r1; : : :; rt)

1� 

#
= Et�1

"
(ct)

1� (r1; : : :; rt)

1� 

#
: (A.10)

Condition (A.9) guarantees that the random variable ln ct (r1; : : :rt�1; ert) is weakly more dis-
persed than ln c0t (r1; : : :rL�1; erL) : It also follows from the EF that both ln ct (r1; : : :rt�1; �) and
ln c0t (r1; : : :rt�1; �) are weakly increasing. These facts, together with (A.10), imply that for the
convex function  and increasing function �, where  �1(x) = x1�

1� , �(x) =
e(1�)x

1� for  6= 1 and
 (x) = ex, �(x) = x for  = 1, we have (see EG, Lemmas 1 and 2):

Et�1[c
0
t (r1; : : :; rt)] = Et�1

�
 � � � ln c0t (r1; : : :; rt)

�
� Et�1 [ � � � ln ct(r1; : : :; rt)] = Et�1[ct(r1; : : :; rt)]:

In the same way, we show that Et�1[c0s(r1; : : :; rs)] � Et�1[cs(r1; : : :; rs)] for any s � t: Conse-

quently, the contract (c0s)s�T is cheaper than (cs)s�T , and so indeed (A.8) must bind.

Integrating out this equality we establish that for t0 � t,

ln ct0(r1; : : :; rt0) = B(r1; : : :; rt�1) + �t0rt0 +

t0�1X
s=t

(�s � ��s+1)rs + �t0 ;

where �s are as required. Writing �0 = ln c0 and ks = �s � �s�1 establishes (24).

We now determine the values of the constants ks. First, we have c
�
0 = e� ln c0 = eRtJtE

�
c�t
�

for t � T for all t: This yields, for all t:


tX

s=1

ks = Rt+ ln Jt +
tX

s=1

lnE
�
e��s("s+a

�
s��a�s�1)

�
;

yielding (26). When the PS constraint is not imposed, we use (7) to derive (10) analogously.

Equation (25) becomes simpler in the limiting case L = T = 1 when a�t = a 8t. Then
the problem is stationary, and � and k are constant. To characterize them, de�ne f(�) =

37



E
�
e(1�)[�("+�a(1��))+k]

�
where k = R + ln �+ lnE

�
e��("+�a(1��))

�
, so that

f(�) = E
�
e(1�)�"

� �
E
�
e��"

�� 1�
 e

1�

(R+ln �):

Then from (25), we have � = g0(�a)���P1
s=t[�f(�)]

s�t + ��, i.e.,

� = (g0(�a)� ��)(1� �f(�)) + ��: (A.11)

In the limit of small time intervals, when � = 0, � satis�es:

� = g0(�a)

�
� ln �+  � 1


(R + ln �) +

 � 1
2

�2�2
�

= g0(�a)

�
( � 1)R� ln �


+
 � 1
2

�2�2
�
:

The value of � is the root that goes to a �nite limit as  ! 1:

� =
1�

q
1� 2( � 1)�2g0(�a)2 (�1)R�ln �



( � 1)�2g0(�a) : (A.12)

Indeed, as  ! 1, � ! g0(�a) (� ln �), which is the solution from the log case in the limit of

small time intervals.

Proof of Theorem 3
We divide the proof into the following steps.

Step 1. Change of variables. Consider the new variable xt, t � L, and per period utility

functions u(ct; xt) de�ned as:

xt =

(
�g(at) if  = 1

e�g(at)
1�
 � if  6= 1

and u(ct; xt) =

(
ln ct + xt if  = 1
ct1�(�xt)

1� if  6= 1
;

where � = sign(1� ); and let at = f(xt). The variable xt measures the agent�s leisure and f

is the �production function�from leisure to e¤ort, which is decreasing and concave. The new

variables are chosen so that u (c; x) is jointly concave in both arguments.

Let U
�
(ct)t�T ; (xt)t�L

�
=
PT

t=1 �
tu(ct; xt) be total discounted utility and consider the max-

imization problem:

max
xt;ct adapted

E
�
U
�
(ct)t�T ; (xt)t�L

��
; (A.13)

with
PT

t=1 e
�rt (yt � ct) � 0 and yt satisfying

ln yt = ln c0 +
tX

s=1

�s(�s + f(xs)� �(�s�1 + f(xs�1))) +
tX

s=1

ks; (A.14)

for f(xs) = a�s for s > L. Problems (A.13) and (30) are equivalent: (xt)t�L and (ct)t�T solve
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(A.13) if and only if (f(xt))t�L and (ct)t�T solve (30). The utility function U
�
(ct)t�T ; (xt)t�L

�
is jointly concave in (ct)t�T and (xt)t�L:

Step 2. Deriving an �upper linearization� utility function. Consider c�t (�) =

c0 exp
�Pt

s=1 �s(�s + f(x�s)� �(�s�1 + f(x�s�1))) +
Pt

s=1 ks
�
, the consumption for the recom-

mended sequence of leisure on the path of noise � = (�t)t�T (where f(x�t ) = a�t ), under no

saving. For any path of noise � = (�t)t�T we introduce the �upper linearization�utility func-

tion bU�: bU� �(ct)t�T ; (xt)t�L� = U +
TX
t=1

(ct � c�t (�))
@U

@ct
+

LX
t=1

(xt � x�t )
@U

@xt
; (A.15)

where U; @U
@ct

and @U
@xt

are evaluated at the (noise dependent) target consumption and leisure

levels (c�t (�))t�T ; (x
�
t )t�L). Since U = U

�
(ct)t�T ; (xt)t�L

�
is jointly concave in (ct)t�T and

(xt)t�L, we have:

bU� �(ct)t�T ; (xt)t�L� � U
�
(ct)t�T ; (xt)t�L

�
for all paths �; (ct)t�T ; (xt)t�L,bU� �(c�t (�))t�T ; (x�t )t�L� = U

�
(c�t (�))t�T ; (x

�
t )t�L

�
for all paths �.

Hence, to show that there are no pro�table deviations for EU , it is su¢ cient to show that there

are no pro�table deviations for E bU�. Moreover, since
ert
@ bU�
@ct

= ert
@U
�
(c�t (�))t�T ; (x

�
t )t�L

�
@ct

=
Jt(c

�
t )
�

e�rt
;

when private saving is allowed, the PS constraint (6) implies that ert @
bU�
@ct

is a martingale. There-

fore, the agent is indi¤erent about when he consumes income yt, and so we can evaluate E bU�
for ct � yt. Since the agent has no motive to save, we only need to show that he has no motive

to change leisure (and thus e¤ort).25 We also let utility be a function of (xt)t�L since it fully

determines the process of income (yt)t�T and thus consumption (ct)t�T .

The results are summarized in the following Lemma.

Lemma 1: (Upper linearization.) Let eU� ((xt)t�L) = bU� �(yt)t�T ; (xt)t�L� for bU� de�ned as in
(A.15) and yt as in (A.14), and consider the following maximization problem:

max
xt adapted

E
heU� ((xt)t�L)i : (A.16)

If the target leisure level (x�t )t�L solves the maximization problem (A.16) then (c�t )t�T and

(x�t )t�L solve the maximization problem (A.13).

Step 3. Pathwise concavity of utility in leisure for  = 1. We must demonstrate
that expected utility is jointly concave in leisure (xt)t�L if the cost function g is su¢ ciently

25For the same reason, it is satisfactory that we have linearized utility at the recommended consumption level.
Since expected linearized utility does not depend on the agent�s saving strategy, we can evaluate it with respect
to an arbitrary savings strategy such as no saving (i.e., consuming the recommended amount).
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convex. For  = 1, we can do so by proving pathwise concavity, i.e., bU� is concave for every
path of noises. (We will deal with the case  6= 1 in step 4). We have:

eU� ((xt)t�L) = TX
t=1

�t(ln c�t (�)� 1) +
LX
t=1

�txt +

TX
t=1

e
Pt
s=1 �s(f(xs)�a�s��(f(xs�1)�a�s�1))+t ln �: (A.17)

Joint concavity of (A.17) in (xt)t�L is equivalent to the joint concavity of the �NPV of

income�function

I ((xt)t�L) =
TX
t=1

e
Pt
s=1 �s(f(xs)�a�s��(f(xs�1)�a�s�1))+t ln �: (A.18)

To prove the latter we will use the following general Lemma.

Lemma 2: (Concavity of present values.) Let

I((bt)t�T ) =
TX
t=1

e
Pt
s=1 js(bs);

where bs 2 R and all js are twice di¤erentiable functions. Suppose that for every s:

sup
h
2C (j0s)

2
+ j00s

i
� 0 (A.19)

for C =
PT

n=0 e
n sup jt=2. Then the function I is concave.

Loosely speaking, the Lemma states that, if js are su¢ ciently concave, then the �NPV value

of income�function I ((bt)t�L) associated with them is also jointly concave in the sequence of

decisions (bt)t�T . This is non-trivial to prove when T !1: for su¢ ciently large t, exp (tj (b))
is a convex function of b, because its second derivative is exp (tj (b)) t

�
tj

0
(b)2 + j00 (b)

�
, which

is positive for su¢ ciently large t. It is discounting (expressed by � < 1) that allows the income

function to be concave.

We use Lemma 2 to prove the following result.

Lemma 3: (Concavity of NPV of income.) The NPV of income

I ((xt)t�L) =
TX
t=1

e
Pt
s=1 �s(f(xs)�a�s��(f(xs�1)�a�s�1))+t ln �

is jointly concave in leisure (xt)t�L:

Step 4. Concavity of expected utility in leisure for  6= 1. When  6= 1, linearized
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utility eU� is:
eU� ((xt)t�L) = LX

t=1



1� 
�tc�t (�)

1�
�

xt
(�x�t )

1�

�

+
TX
t=1

�t(�x�t )
c1�0 e

Pt
s=1 �s(f(xs)�a�s��(f(xs�1)�a�s�1)+(1�)"s)+(1�)ks : (A.20)

Unlike when  = 1, the second term in (A.20), i.e., the �NPV of income function�, now depends

on noise �. We therefore cannot prove pathwise concavity of linearized utility, and instead prove

concavity of expected utility directly.

Expected utility is given by

E
heU�((xt)t�L)i

= E

"
LX
t=1

Atxt +

TX
t=1

Mt(�)e
Pt
s=1[�s(f(xs)�a�s��(f(xs�1)�a�s�1))+lnE(e(1�)�s"s)+(1�)ks]+t ln ��(1�)g(a�t )

#

= E

"
LX
t=1

Atxt +MT (�)
TX
t=1

e
Pt
s=1[�s(f(xs)�a�s��(f(xs�1)�a�s�1))+lnE(e(1�)�s"s)+(1�)ks]+t ln ��(1�)g(a�t )

#
;

where Mt(�) = e
Pt
s=1[(1�)�s"s�lnE(e(1�)�s"s)]+(1�) ln c0 is a martingale. The second equality

follows from the law of iterated expectations and Mt(�) being a martingale.

We use Lemma 2 to prove the following result.

Lemma 4: (Concavity of modi�ed NPV of income.) The modi�ed NPV of income

I 0((xt)t�L) =
TX
t=1

e
Pt
s=1[�s(f(xs)�a�s��(f(xs�1)�a�s�1))+lnE(e(1�)�s"s)+(1�)ks]+t ln ��(1�)g(a�t );

for f(xs) = a�s if s > L, is pathwise jointly concave in leisure (xt)t�L:

We now conclude the proof of the Theorem. From Theorem 2, E eU� satis�es the �rst-order
conditions at (x�t )t�L. From step 4, E eU� is also concave in (xt)t�L, and so the target leisure
level (x�t )t�L solves the maximization problem (A.16). Therefore, from Lemma 1, (c�t )t�T and

(x�t )t�L solve the maximization problem (A.13), establishing the result.

Proof of Theorem 4
This proof is in the Internet Appendix.

Proof of Proposition 2
We now impose the NM constraint. Proceeding inductively as in the proof of Theorem 2,

we have a contract of the form:

ln ct = ln c0 +

tX
s=1

�srs +

tX
s=1

kt;
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with kt as in the statement of Proposition 2, and �t deterministic lowest nonnegative values

such that the EF and NM constraints are satis�ed, i.e.:

EF : g0(�a) � �t
�
1 + �+ : : :+ �T�t

�
for t � L; (A.21)

NM : �t
�
�t+ : : :+ �T

�
qi � �t+i

�
�t+i+ : : :+ �T

�
, for 0 � t � L, 0 � i �M: (A.22)

De�ning �t = �t
�
1 + �+ : : :+ �T�t

�
, this can be rewritten:

g0(�a) � �t for t � L;

�tqi � �i�t+i for 0 � t � L, 0 � i �M:

This yields the values described in the Proposition.
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Internet Appendix for �Dynamic CEO Compensation�

Alex Edmans, Xavier Gabaix, Tomasz Sadzik, and Yuliy Sannikov

B. Continuous Time

We now consider the continuous-time analog of the model, assuming a�t = a 8 t (from

Theorem 4). The CEO�s utility is given by:

U =

8<: E
hR T
0
�t (cth(at))

1��1
1� dt

i
if  6= 1

E
hR T
0
�t (ln ct + lnh (at)) dt

i
if  = 1:

(B.1)

The �rm�s returns evolve according to:

dRt = atdt+ �tdZt,

where Zt is a Brownian motion, and the volatility process �t is deterministic. We normalize

r0 = 0 and the risk premium to zero, i.e., the expected rate of return on the stock is R in each

period.

Proposition 3 (Optimal contract, continuous time, log utility). The continuous-time limit of

the optimal contract pays the CEO ct at each instant, where ct satis�es:

ln ct =

Z t

0

�sdRs + �t, (B.2)

where �s and �t are deterministic functions. If short-termism is impossible, the sensitivity �t is

given by:

�t =

(
g0(a)R T

t �T�sds
for t � L;

0 for t > L:
(B.3)

If short-termism is possible, �t is given by:

�t =

(
�tR T

t �T�sds
for t � L+M;

0 for t > L+M;
(B.4)

where:

�s =

8<: max0<i�M;i<s

n
g0(�a); qi

�i
�s�i

o
for s � L

maxs�L�i�M;i<s

n
qi
�i
�s�i

o
for L < s � L+M

:

If private saving is impossible, the constant �t is given by

�t = (R + ln �) t�
Z t

0

�sE [dRs]�
Z t

0

�2s�
2
s

2
ds+ �: (B.5)
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If private saving is possible, �t is given by

�t = (R + ln �) t�
Z t

0

�sE [dRs] +

Z t

0

�2s�
2
s

2
ds+ �; (B.6)

where � ensures that the agent is at his reservation utility.

Proposition 4 (Optimal contract, continuous time, general CRRA utility, with PS constraint).

Let �t denote the stock volatility. The optimal contract pays the CEO ct at each instant, where

ct satis�es:

ln ct =

Z t

0

�sdRs + �t; (B.7)

where �s and �t are deterministic functions. The continuous-time limit of the optimal contract

is the following. The sensitivity �t is given by:

�t =
�te�(1�)g(�a)g0(�a)R T

t
�se�(1�)g(�a)+(1�)(�s��t)Et

�
e(1�)

R s
t ��dR�

�
ds

for t � L, (B.8)

�t = 0 for t > L.

The value of �t is:

�t = (R + ln �)t� (1� )g(a)1t�L � 

Z t

0

�sads+
1

2
2
Z t

0

�2s�
2
sds+ �; (B.9)

where � ensures that the agent is at his reservation utility.

The implications of the optimal contract are the same as for discrete time, except that the

rebalancing of the account is now continuous. As in the discrete time case, the expressions

become simpler if L = T =1. We have

� =
g0(�a)R1

t
�s�tek(1�)(s�t)e(1�)��a(s�t)+

1
2
(1�)2�2�2(s�t)ds

:

De�ne

�v(�) = ln �+ k(1� ) + (1� )��a+
1

2
(1� )2�2�2

where

k = (R + ln �)� ��a+
1

2
2�2�2:

We obtain

v(�) = � ln �+  � 1


(R + ln �) +
 � 1
2

�2�2

=
( � 1)R� ln �


+
 � 1
2

�2�2:
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We then have � = g0(�a)R1
t e�v(�)(s�t)ds

, i.e.,

� = g0(�a)v(�):

The solution is the one in the discrete time model in the main paper, (27).

C. Analysis of Theorem 2

This section provides the analysis behind the comparative statics of the determinants of �t,

discussed in the main paper shortly after Theorem 2. To study the impact of volatility on the

contract, we parameterize the innovations by "t = �"0t, where � indicates volatility. We de�ne

the function:

G (�; ; �) =
 � 1


lnE
h
e���"

0
i
� lnE

h
e(1�)��"

0
i

in the domain � � 0; � � 0;  � 1. For instance, when "0 is a standard normal, G (�; ; �) =

�2�2 �1
2
, and G is increasing in �; , and �.

We also de�ne

H (�; ; �) = G (�; ; �)� ln �+R


:

If ln �+R is su¢ ciently close to 0, then H (�; ; �) is increasing in in �; ; �.

Lemma 5: Consider the domain � � 0; � � 0;  � 1, in the case where � = 0, T = L and

a�t = a� 8t. Suppose that H (�; ; �) is increasing in its arguments in that domain. Then,
�T = g0 (a�), and for t < T , �t is increasing in , in �, and decreasing in �. If H (�; ; �) is

close enough to 0, then �t is increasing in t.

The lemma means that the sensitivity pro�le is increasing, and becomes �atter as  and

� are higher. The intuition is thus: a higher , a higher �, or a lower �, tend to decrease the

relative importance of future consumption E
�
�tc1�t

�
. Hence, it is important to give a higher

sensitivity to the agent early on. By contrast, when  is low, future consumption is more

important and so it is su¢ cient to give a lower sensitivity early on.

Proof Using Theorem 2, simple calculations show, for t � L,

�t =
g0 (a�)PT

s=t �
s�tQs

n=t+1 e
�G(�n;;�)+ 1�


(R+ln �)

=
g0 (a�)PT

s=t

Qs
n=t+1 e

�G(�n;;�)+ 1�

R+ 1


ln �
:

�t =
g0 (a�)PT

s=t e
�
Ps
n=t+1(H(�n;;�)+R)

: (C.1)

We have �T = g0 (a�). Proceeding by backward induction on t, starting at t = T , we see

that �t is increasing in : this is because a higher  increases H (�n; ; �) via the direct e¤ect
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on H, and the e¤ect on the future �n (n > t), so it increases �t. The same reasoning holds for

the comparative statics with respect to � and �.

The last part of Lemma 5 comes from the fact that when H ! 0, �t ! g0(a�)PT
s=t e

�R(t�s) , which

is increasing in t.

Another tractable case is the in�nite horizon limit, where T = L!1. Since the problem
is stationary, �t is equal to a limit �. From (C.1), this limit satis�es:

� = g0 (a�)
�
1� e�H(�;;�)�R

�
:

For instance, in the continuous-time, Gaussian noise limit,

� = g0 (a�)

�
�2�2

 � 1
2

� ln �+R


+R

�
:

which gives the solution (27). The sensitivity of incentives (�) is higher when the agent is more

risk-averse (higher , provided ln �+R is close enough to 0), there is more risk (higher �), and

the agent is less patient (lower �).

D. Variable Cost of E¤ort

This section extends the core model to allow a deterministically varying marginal cost of

e¤ort. In practice, this occurs if either the cost function or high e¤ort level changes over time.

For example, for a start-up �rm, the CEO can undertake many actions to improve �rm value

(augmenting the boundary e¤ort level) and e¤ort is relatively productive (reducing the cost of

e¤ort). However, the scope and productivity of e¤ort declines as the �rm matures.

We now allow for a time-varying boundary e¤ort level at and cost of e¤ort gt (�). The
sensitivity of the contract in Theorem 1 and Proposition 2 (equations (9) and (33)) now becomes:

�t =

(
g0t(�at)

1+�+:::+�T�t for t � L;

0 for t > L;
(D.1)

if myopia is impossible, and if myopia is possible

�t =

(
�t

1+�+:::+�T�t for t � L+M;

0 for t > L+M;
(D.2)

where

�s =

8<: max1�i�M;i<s

n
g0s(�as);

qi
�i
�s�i

o
for s � L;

maxs�L�i�M;i<s

n
qi
�i
�s�i

o
for L < s � L+M:

With a non-constant marginal cost of e¤ort, the contract sensitivity �t is time-varying, even

in an in�nite-horizon model. In particular, �t is high in the periods in which g0t (�at) is high. Let

s � L denote the period in which g0t (�at) is highest. Even if there is no discounting (� = 1),
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the CEO may have an incentive to increase rs at the expense of the signal in period j (where

j � s +M), if the di¤erence in slopes �s and �j is su¢ cient to outweigh the ine¢ ciency of

earnings in�ation (qi < 1). Thus, the sensitivity �j will have to rise to be su¢ ciently close to �s
to deter such myopia. However, this in turn has a knock-on e¤ect: since �j has now risen, the

CEO may have an incentive to increase rj at the expense of rk (where k � j +M) and so on.

Therefore, if qi is su¢ ciently high (to make myopia attractive), the high sensitivity at s forces

upward the sensitivity in all periods t � L+M , even those more than M periods away from s,

owing to the knock-on e¤ects. This �resonance�explains the recursive formulation in equation

(D.2), where a high g0t (�at) may a¤ect the sensitivity for all t � L+M .

This dependence can be illustrated in a numerical example. We set T = 5, L = 3, � = 1,

g01 (a1) = 2 and g
0
2 (a2) = g03 (a3) = 1. If myopia is impossible, the optimal contract is:

ln c1 =
2

5
r1 + �1;

ln c2 =
2

5
r1 +

r2
4
+ �2;

ln c3 =
2

5
r1 +

r2
4
+
r3
3
+ �3;

ln c4 =
2

5
r1 +

r2
4
+
r3
3
+ �4;

ln c5 =
2

5
r1 +

r2
4
+
r3
3
+ �5:

Since the marginal cost of e¤ort is high at t = 1, the contract sensitivity must be high at t = 1

to satisfy the EF condition. However, this now gives the CEO incentives to engage in myopia

if it were possible. Assume M = 1 and q1 > 1p
2
. If he engages in myopia that increases r1 by

q1 units and reduces r2 by 1 unit, lifetime consumption rises by 2q1 units from the former and

falls by 1 unit from the latter. Therefore, the sensitivity of the contract at t = 2 must increase

to remove these incentives. The sensitivity is now q1
2
per period to give a total lifetime reward

of 2q1. This increased sensitivity at t = 2 in turn augments the required sensitivity at t = 3,

else the CEO would in�ate r2 at the expense of r3: �3 now becomes
2q21
3
> 1

3
. Therefore, even

though the maximum release lag M is 1 and so the CEO cannot take any actions to in�ate r1
at the expense of r3, the high sensitivity at r1 still a¤ects the sensitivity at r3 by changing the

sensitivity at r2. Finally, the contract must remain sensitive to �rm returns beyond retirement,
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to deter the CEO from in�ating r3 at the expense of r4. The new contract is given by:

ln c1 =
2

5
r1 + �1;

ln c2 =
2

5
r1 +

q1
2
r2 + �2;

ln c3 =
2

5
r1 +

q1
2
r2 +

2q21
3
r3 + �3;

ln c4 =
2

5
r1 +

q1
2
r2 +

2q21
3
r3 + q31r4 + �4;

ln c5 =
2

5
r1 +

q1
2
r2 +

2q21
3
r3 + q31r4 + �5:

This result contrasts with the example in Section B.1 where the possibility of myopia did

not change the contract for t � L under no discounting and a constant marginal cost of e¤ort.

E. Additional Proofs

This section contains proofs of lemmas, corollaries and other claims in the main paper.

A. Proof of Corollary 1

SinceL = T = 1, we have constants �s = � and ks = k. For notational simplicity we

normalize (without loss of generality) u = 0 and �a = 0. The expected cost of the contract is:

C = E

" 1X
t=1

e�Rtct

#
=

1X
t=1

E

"
exp

 
�Rt+ ln c0 +

tX
s=1

�srs +
tX

s=1

ks

!#

=
1X
t=1

exp
��
k �R + lnE

�
e��
��
t+ ln c0

�
= c0

ek�R+lnE[e
��]

1� ek�R+lnE[e
��]
:

The value of c0 is pinned down by the participation constraint:

0 = u = E

" 1X
t=1

�t ln ct

#
=

1X
t=1

�t

"
ln c0 +

tX
s=1

�s�a+
tX

s=1

ks

#
=

1X
t=1

�t [ln c0 + kt]

=
�

1� �
ln c0 +

�

(1� �)2
k

so that ln c0 = � 1
1��k. Hence

C = e�
1

1��k
ek�R+lnE[e

��]

1� ek�R+lnE[e
��]
:
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For the contract without PS, we have k = R + ln �� lnE
�
e��
�
, so

CNPS = e�
1

1��(R+ln ��lnE[e��]) �

1� �
:

For the contract with PS, we have k = R + ln �+ lnE
�
e���

�
, so

CPS = e�
1

1��(R+ln �+lnE[e���]) �elnE[e
���]+lnE[e��]

1� �elnE[e
���]+lnE[e��]

:

Thus,

� =
CPS
CNPS =

(1� �) e�
�

1��(lnE[e���]+lnE[e+��])

1� �elnE[e
���]+lnE[e��]

=
1� �

1� �e�2�2
e�

��2�2

1�� :

In the limit of small time intervals, lnE
�
e���

�
+lnE

�
e+��

�
� �2�2, and 1�� = � are small

(proportional to the time interval �t), and � � g0 (a) �, so

� � �e���
2�2=(1��)

1� (1� �) (1 + �2�2)
� �e��

2�2=(1��)

� � �2�2
=
e��

2�2=(1��)

1� �2�2

1��
:

B. Proof of Theorem 4

We wish to show that, if baseline �rm size X is su¢ ciently large, the optimal contract

implements high e¤ort (at � a for all t).

Fix any contract (A; Y ) that is incentive compatible and gives expected utility u, where

A = (a1; : : :; aL) is the e¤ort schedule, at : [�; �]t ! [0; a], and Y = (y1; : : :; yT ) is the payo¤

schedule, yt : [�; �]t ! R. The timing in each period is as follows: the agent reports noise �t, then
is supposed to exert e¤ort at(�1; : : :; �t). If the return is �t + at(�1; : : :; �t) he receives payo¤

yt(�1; : : :; �t), else he receives a payo¤ that is su¢ ciently low to deter such �o¤-equilibrium�

deviations. We require this richer framework, since in general the noises might not be identi�able

from observed returns (when �t+ at(�1; : : :; �t) = �0t+ at(�1; : : :; �t�1; �
0
t) for �t 6= �0t ). Note that

the required low payo¤ may be negative. A limited liability constraint would be simple to

address, e.g., by imposing a lower bound on �. We will denote (�1; : : :; �t) by �t.

To establish the result it is su¢ cient to show that we can �nd a di¤erent contract (A�; Y �)

that implements high e¤ort (at � a for all t), and is not signi�cantly costlier than (A; Y ), in

the sense that

E

"
TX
t=1

e�rt(y�t (�t)� yt(�t))

#
� h(E [a� a1(�1)] ; : : :; E [a� aL(�L)]); (E.1)

for some linear function h; h : RL ! R; with h(0; : : :; 0) = 0: This is su¢ cient, because if
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initial �rm size X is su¢ ciently large, then for every sequence of noises and actions, �rm value

Xe
Pt�1
s=1(�s+as(�s))+� is greater than D, where D is the highest sensitivity coe¢ cient of h. This

in turn implies

Xe
Pt�1
s=1(�s+as(�s))+� � E

�
ea � eat(�t)

�
� D � E [a� at(�t)] ; (E.2)

and so the bene�ts of implementing high e¤ort outweigh the costs, i.e., the RHS of (E.1) exceeds

the LHS of (E.1). To keep the proof concise we assume �er = 1, T = L and the noises �t are

independent across time. The general case is proven along analogously.

We introduce the following notation. For any contract (A; Y ) and history �t let ut(�t) =
[yt(�t)e�g(at(�t))]1�

1� (or ut(�t) = ln yt(�t)� g(at(�t)) for  = 1) denote the CEO�s stage game util-
ity for truthful reporting in period t after history �t when he consumes his income, let Ut(�t) =

Et

hPL
s=t �

s�tus(�s)
i
denote his continuation utility, and mut(�t) = y�t (�t)e

�(1�)g(at(�t)) de-

note his marginal utility (MU) of consumption. We divide the proof into the following six

steps.

Step 1. Local necessary conditions. First, we generalize the local e¤ort constraint (5)
to contracts that need not implement high e¤ort.

Lemma 6: Fix an incentive compatible contract (A; Y ), with each at(�t�1; �) continuous almost
everywhere and bounded on every compact subinterval, and a history �t�1. The CEO�s contin-

uation utility Ut(�t�1; �t) must satisfy the following:

Ut(�t�1; �t) = Ut(�t�1; �) +

Z �t

�

[yt(�t�1; x)e
�g(at(�t�1;x))]1�g0(at(�t�1; x))dx; (E.3)

with yt(�t) > 0:

Step 2. Bound on the cost of incentives per period. For any history �t�1 and

contract (A; Y ), consider �repairing�the contract at time t as follows. Following any history�
�t�1; �

�
, multiply all the payo¤s by the appropriate constant �(�t�1; �) such that the contin-

uation utilities U#t (�t�1; �t) for the resulting contract satisfy (E.3) with at(�t�1; �t) = a for all

�t: In other words, the local EF constraint for high e¤ort at time t after history �t�1 is satis�ed.

The following Lemma bounds the expectation of how much we have to scale up the payo¤s by

the expectation of how much the target e¤ort falls short of the boundary e¤ort level.

Lemma 7: Fix an incentive compatible contract (A; Y ) and a history �t�1, and consider the

contract (A#; Y #) such that:

a#t (�t�1; �t) = a for all �t; else a#s � as;

y#s (�s) = ys(�s)� �(�t�1; �t) if �sjt = �t�1; �t; and else y#s (�s) � ys(�s);
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where �(�t�1; �t) � 1 is the unique number such that U
#
t (�t�1; �) = Ut(�t�1; �) and

U#t (�t�1; �t) = U#t (�t�1; �) +

Z �t

�

[�(�t�1; x)yt(�t�1; x)e
�g(a)]1�g0(a)dx: (E.4)

Then:

Et�1
�
�(�t�1; �t)

�
� '(Et�1 [a� at(�t)]); (E.5)

where '(x) = e
g0(a) sup g00

fg02 x
�
1 + 1<1e

g(a)�g(a)g0(a)(1� )x
�
for  6= 1,

'(x) = e
g0(a) sup g00

fg02 x
�
1 + eg(a)�g(a)g0(a)x

�
for  = 1, and f is the pdf of noise �.

Step 3. Constructing the contract that satis�es the local EF constraint in every
period. We want to use the procedure from step 2 to construct a new contract (Ax; Y x) that

implements high e¤ort, satis�es the local EF in every period, and has a cost di¤erence over

(A; Y ) that is bounded by how much (A; Y ) falls short of the contract that implements high

e¤ort. For this we need the following Lemma.

Lemma 8: For a contract (A; Y ) and any � > 0 consider the contract (A; �Y ) in which all the

payo¤s are multiplied by �;

i) if (A; Y ) satis�es the local EF constraint then so does (A; �Y );

ii) if (A; Y ) satis�es the local PS constraint then so does (A; �Y ).

Given an incentive compatible contract (A; Y ), we construct the contract (Ax; Y x) as follows.

The contract always prescribes high e¤ort. Regarding the payo¤s, for any period t after a history

�t�1 we �rst multiply all payo¤s after history (�t�1; �) with �xed constants �(�t�1; �) > 1 as

in Lemma 7 so that the resulting utilities U#t (�t) satisfy (E.4). Then we multiply all payo¤s

following history �t�1 by the appropriate constant �
pu(�t�1) < 1 so that for the resulting

contract (Ax; Y x) we obtain the original promised utility, i.e., Ut�1(�t�1) = Ux
t�1(�t�1). By

construction and the above Lemmas, the contract (Ax; Y x) satis�es the local EF constraint. In

particular, due to Lemma 8, repairing the contract after history �t�1 will not upset the local

EF constraint after history
�
�t�1; �t

�
.

The original contract (A; Y ) satis�es the local PS constraint, i.e., the current marginal utility

of consumption always equals the next-period expected marginal utility. Providing incentives

for high e¤ort in contract (Ax; Y x) upsets this condition. In the following two steps, given

(Ax; Y x); we construct the contract (A�; Y �) that also satis�es the local PS constraint and

is not much costlier. In particular, we show that the extent to which the marginal utilities of

consumption in (A�; Y �) depart from the marginal utilities in (Ax; Y x) is bounded by the extent

to which e¤ort falls short of the high e¤ort level in contract (A; Y ):

Step 4. Bound on the decrease of expected MU of consumption per period. We
split this step into two Lemmas. The �rst bounds the expected decrease in marginal utility

of consumption from providing incentives for high e¤ort in the current period, as in step 2.
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The second bounds the decrease in expected marginal utility by the expected decrease of the

marginal utility.

Lemma 9: Fix any history �t�1 and look at the original contract (A; Y ) and the contract

(A#; Y #) from step 1. Then:

Et�1

"
mu#t (�t�1; �t)

mut(�t�1; �t)

#
�

e
�g0(a) sup g00

fg02Et�1[a�at(�t)]
�
1� 1<1e�(1+)(1�)[g(a)�g(a)]g0(a)(1� )(1 + )Et�1 [a� at(�t)]

�
:

Lemma 10: Fix any history �t�1 and look at any two contracts (A
l; Y l) (Ah; Y h) with positive

payo¤s that satisfy (E.3) and, for every �t, mult(�t�1; �t) � muht (�t�1; �t). Then, for some

D2 > 0 :
Et�1

�
mult(�t�1; �t)

�
Et�1

�
muht (�t�1; �t)

� � 1�D2

�
1� Et�1

�
mult(�t�1; �t)

muht (�t�1; �t)

��
:

Step 5. Constructing the contract that satis�es the local PS constraint in every
period. Providing incentives for high e¤ort in (Ax; Y x) at (say) time L a¤ects the marginal

utility of consumption in period L and upsets the PS constraint in period L � 1: However,
restoring the PS constraint in period L � 1 will a¤ect the marginal utility of consumption in
period L�1 and so upset the PS constraint in period L�2, and so on. In the following Lemma
we bound this overall e¤ect using Lemma 9 and iteratively Lemma 10.

Lemma 11: There is a contract (A�; Y �) that implements maximal e¤ort and satis�es the local

EF and PS constraints, and for every history �t:

mu�t (�t)

muxt (�t)
�

LY
s=t+1

�s�t(Et [ (Es�1 [a� as(�s)])]), (E.6)

where �(x) = 1�D2 (1� x) ;  (x) = e
�g0(a) sup g00

fg02 x
�
1� 1<1e�(1+)(1�)[g(a)�g(a)]g0(a)(1� )(1 + )x

�
:

Step 6. Bounding the cost di¤erence (E.1). By construction, contract (A�; Y �) from

Lemma 11 implements high e¤ort, causes the local EF constraint to bind, satis�es the local PS

constraint and leaves the CEO with the expected discounted utility u. Therefore it is identical

to the contract from Theorem 2, and so also satis�es the global constraints (Theorem 3). It

therefore remains to prove (E.1).

One can verify that for some D3 > 0 for every history �t we have y
�
t (�t) < D3: Moreover,

for any a; b; c 2 R++,

a� b � a
�
maxfa�c

c
; 0g+maxf c�b

b
; 0g
�
= a

�
maxfa

c
; 1g � 1 + maxf c

b
; 1g � 1

�
:

56



Consequently,

E

"
LX
t=1

e�rt(y�t (�t)� yt(�t))

#
� D3 � E

"
LX
t=1

e�rt
�
max

�
y�t (�t)

yxt (�t)
; 1

�
� 1 + max

�
yxt (�t)

yt(�t)
; 1

�
� 1
�#

� D3 � E

24 LX
t=1

e�rt

0@ LY
s=t+1

�s�t(Et [ (Es�1 [a� as(�s)])])

!� 1


� 1 + ' (Et�1 [a� at(�t)])� 1

1A35 ;
where ' is as in Lemma 7, while � and  are as in Lemma 11. All functions '; �;  ;

QL
s=t+1 xs

and x�
1
 are continuously di¤erentiable and take value 1 for argument(s) equal to 1, whereas

a � at(�t) is bounded. Therefore there is a linear function h : RL ! R with h(0; : : :; 0) = 0

such that (E.1) is satis�ed.

The above proof is for the case where private saving is possible as this is the more complex

case. If  = 1 and private saving is impossible, step 4 is not needed and Lemma 11 in step 5

and step 6 become signi�cantly simpler.

C. Contract with CARA Utility and Additive Preferences

With these preferences, the agent has period utility

u(c; a) = �e�(c�g(a)):

The derivation of the local constraints and the contract are analogous to the paper. Consider

a two period model with no discounting. From EF we have:

c2(r1; r2) = B(r1) + g0(a)� r2:

PS yields:

@U

@c1
= E1

�
@U

@c2

�
e�(c1�g(a)) = E1

h
e�(B(r1)+g

0(a)�r2�g(a))
i
;

c1 � g(a) = B(r1)� g(a)�
logE1

�
e�(g

0(a)�r2)
�


;

c1(r1) = B(r1) + k;

and so we have

c1(r1) = �1r1 + k1;

c2(r1; r2) = �1r1 + �2r2 + k1 + k2;

similar to the main paper.
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D. Negative E¤ect of Short-Termism

We show that the condition (31) is su¢ cient for myopia to have a negative impact on the

expected terminal dividend. Fix the e¤ort strategy to be the high e¤ort strategy. Consider any

time t and assume that it has been shown that any myopic actions past time t are suboptimal.

We must establish that:

e
PM

i=1�i(E[mt;i(�t+i)])E

"
e

PM
s=t+1

�
�s�
Pt

r=s�Mmr;s�r(�s)

�#
� E

"
e

PM
s=t+1

�
�s�
Pt�1

r=s�Mmr;s�r(�s)

�#
:

For any i �M we have:

e�i(E[mt;i(�t+i)])E

�
e�t+i�

Pt
r=t+i�Mmr;t+i�r(�t+i)

�
� e�i(E[mt;i(�t+i)])E

�
e�t+i�

Pt�1
r=t+i�Mmr;t+i�r(�t+i) � e��M�mmt;i (�t+i)

�
� e�i(E[mt;i(�t+i)])E

"
e
�t+i�

Pt�1
r=t+i�Mmr;t+i�r(�t+i)

#�
1� e��M�m

E [e�]
E [mt;i (�t+i)]

�

� e�i(E[mt;i(�t+i)])E

"
e
�t+i�

Pt�1
r=t+i�Mmr;t+i�r(�t+i)

#
e�

e
��M�m
E[e� ]

E[mt;i(�t+i)]

� E

"
e
�t+i�

Pt�1
r=t+i�Mmr;t+i�r(�t+i)

#
;

where the �rst inequality follows from the Mean Value Theorem.

E. Proofs of Lemmas

Proof of Lemma 2: Let

Ps((bt)t�T ) = e
Ps
n=1 jn(bn);

Ss((bt)t�T ) =
TX
n=s

e
Pn
m=1 jm(bm) =

TX
n=s

Pn((bt)t�T );

for any s � T . For the rest of the proof, �x an argument sequence (bt)t�T . We will evaluate

all the functions at this sequence, and consequently economize on notation by dropping the

argument of Ss, Ps and js.

For unit vectors er and es; r � s, consider the derivatives of the function I:

@I

@es
= j0sSs;

@2I

@er@es
= j0sj

0
rSr + 1r=sj

00
sSs:
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Therefore, for a �xed vector y = (yt)t�T the second derivative in the direction y = (yt)t�T is:

@2I

@y@y
=

TX
s=1

TX
r=1

ysyr
@2I

@es@er
= 2

TX
s=1

X
r�s

ysyrj
0
sj
0
rSr +

TX
s=1

y2sj
00
sSs: (E.7)

We will bound the expression in (E.7). For this purpose note that for any s � T and

q � T � s we have:

Ss+q =
TX

n=s+q

Pn � eq sup jt
TX
n=s

Pn = eq sup jtSs:

It follows that for  = sup jt
2
:X

r�s
Sre

� (r�s) � CSs;
X
s;r�s

Sry
2
re
 (r�s) =

X
r

y2rSr
X
s�r

e (r�s) � C
X
s

Ssy
2
s ; (E.8)

where:

C =
TX
n=0

en : (E.9)

Consequently, for any vector z=(zt)t�T ; zt 2 R:

X
s;r�s

zszrSr =
X
s

zs
X
r�s

p
Srzre

 
2
(r�s)

p
Sre

� 
2
(r�s) �

X
s

zs

 X
r�s

Srz
2
re
 (r�s)

!1=2 X
r�s

Sre
� (r�s)

!1=2
(E.10)

�
p
C
X
s

zs
p
Ss

 X
r�s

Srz
2
re
 (r�s)

!1=2
�
p
C

 X
s

z2sSs

!1=2 X
s

 X
r�s

Srz
2
re
 (r�s)

!!1=2

� C

 X
s

z2sSs

!1=2 X
s

Ssz
2
s

!1=2
= C

X
s

z2sSs;

where the �rst and third inequalities follow from the Cauchy-Schwartz inequality, and C is

as in (E.9).

Therefore, using both (E.7) and (E.10) we obtain:

@2I

@y@y
�

TX
s=1

y2s
�
2Cj02s + j00s

�
Ss;

establishing the Lemma.

Proof of Lemma 3: To show that I ((xt)t�L) is jointly concave in leisure (xt)t�L we use Lemma
2 with bt = xt and:

js(xs) = (�s � ��s+1) (f(xs)� a�s) + ln �; (E.11)
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Since

f 0(xs) =
�1

g0(f(xs))
; f 00(xs) =

�g00(f(xs))
g03(f(xs))

;

and we have assumed that �s � ��s+1 � 0, the condition (A.19) is satis�ed if g has su¢ ciently
high curvature.

Proof of Lemma 4: We must verify condition (A.19) in Lemma 2 for bt = xt and js de�ned

as:

js(xs) = (�s � ��s+1) (f(xs)� a�s) +Ds;

for Ds = (1� )ks + lnE
�
e(1�)�ses

�
+ ln �+ (1� )

�
g
�
a�s�1

�
+ g (a�s)

�
: The rest of the proof

follows as in the  = 1 case, with the derivatives of the f function being:

f 0(xs) = �D
1

xsg0(f(xs))
; f 00(xs) =

1

x2sg
02(f(xs))

�
Dg0(f(xs))�D2 g

00(f(xs))

g0(f(xs))

�
;

for D = 
1� sign(1� ). Consequently I 0((xt)t�L) is jointly concave.

Proof of Lemma 6: Let Ut(�t; �0t) be the CEO�s continuation utility after history �t if the
agent reports

�
�t�1; �

0
t

�
: Equation (E.3) follows from the standard envelope conditions, i.e.,

@
@�0t
Ut(�t; �

0
t)j�0t=�t = 0, together with:

Ut(�t; �
0
t) = Ut(�t�1; �

0
t) + g(at(�t�1; �

0
t))� g(at(�t�1; �

0
t) + �0t � �t); for  = 1;

Ut(�t; �
0
t) = Ut(�t�1; �

0
t) +

yt(�t�1; �
0
t)
1� �e�g(at(�t�1;�0t)+�0t��t)(1�) � e�g(at(�t�1;�

0
t))(1�)

�
1� 

: for  6= 1:

The technical assumptions on at(�t�1; �) guarantee that Ut(�t�1; �) is absolutely continuous
(see EG for details). yt(�t) > 0 follows from PS, since the marginal utility of consumption at

zero is in�nite.

Proof of Lemma 7: Note that if instead of U#t (�t�1; �) and �(�t�1; �) we solve for the functions
U#t (�t�1; �) and �(�t�1; �) that satisfy U

#
t (�t�1; �) = Ut(�t�1; �) and

U#t (�t�1; �t) = U#t (�t�1; �) +

Z �t

�

[�(�t�1; x)yt(�t�1; x)e
�g(a)]1�g0(a)dx; (E.12)

U#t (�t�1; �t)� Ut(�t�1; �t) = g(at(�t�1; �t))� g(a) + ln �(�t�1; �t); for  = 1;

U#t (�t�1; �t)

Ut(�t�1; �t)
=
[�(�t�1; �t)yt(�t�1; �t)e

�g(a)]1�

[yt(�t�1; �t)e
�g(at(�t�1;�t))]1�

; for  6= 1;

then we have �(�t�1; �t) � �(�t�1; �t) (and �(�t�1; �t) = �(�t�1; �t) when t = L): Therefore it

is su¢ cient to show (E.5) holds for Et�1
�
�(�t�1; �t)

�
:

Since �t�1 is �xed, to economize on notation we write Ut(�t) instead of Ut(�t�1; �t) etc.
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Case  6= 1: We have:

U#t (�t) = U#t (�) +

Z �t

�

U#t (x)

Ut(x)

�
yt(x)e

�g(at(x))
�1�

g0(at(x))
g0(a)

g0(at(x))
dx;

Ut(�t) = U#t (�) +

Z �t

�

�
yt(x)e

�g(at(x))
�1�

g0(at(x))dx:

Therefore, 
U#t (�t)

Ut(�t)

!0
=

=

U#t (�t)

Ut(�t)

�
yt(�t)e

�g(at(�t))
�1�

g0(at(�t))
g0(a)

g0(at(�t))
Ut(�t)�

�
yt(�t)e

�g(at(�t))
�1�

g0(at(�t))U
#
t (�t)

Ut(�t)2
=

=
U#t (�t)

�
yt(�t)e

�g(at(�t))
�1�

g0(at(�t))
h

g0(a)
g0(at(�t))

� 1
i

Ut(�t)2
� U#t (�t)

Ut(�t)
(1� )g0(a)

�
g0(a)

g0(at(�t))
� 1
�
for  < 1:

It follows that:

U#t (�t)

Ut(�t)
� e

(1�)g0(a)
R �t
�

�
g0(a)

g0(at(x))
�1
�
dx � e

(1�) sup g
0(a)
f

Et�1
�

g0(a)
g0(at(x))

�1
�
� e

(1�)g0(a) sup g00
fg02Et�1[a�at(�t)]; for  < 1:

(E.13)

where the last inequality follows because g0(a)
g0(a) = g0(a)

h
1

g0(a) + (a� a) g
00(xa+(1�x)a)
g02(xa+(1�x)a)

i
for some

x 2 [0; 1]: For  > 1 we obtain the analogous chain with the inequality signs reversed. Thus,

Et�1
�
�(�t)

�
= Et�1

24"U#t (�t)
Ut(�t)

# 1
1�

e[g(a)�g(at(�t))](1�)

35 � (E.14)

� e
g0(a) sup g00

fg02Et�1[a�at(�t)]Et�1
�
e[g(a)�g(at(�t))](1�)

�
�

� e
g0(a) sup g00

fg02Et�1[a�at(�t)]
�
1 + 1<1e

g(a)�g(a)(1� )g0(a)Et�1 [a� at(�t)]
�
:

Case  = 1: Comparing (E.3) and (E.12) we immediately obtain:

ln �(�t) =

Z �t

�

�
g0(a)

g0(at(x))
� 1
�
g0(at(x))dx+ g(a)� g(at(�t)):

Using the analogous bounds as in (E.13) and (E.14) we obtain:

Et�1
�
�(�t)

�
� Et�1

�
e
g0(a)

R �t
�

�
g0(a)

g0(at(x))
�1
�
dx+g(a)�g(at(x))

�
� e

g0(a) sup g00
fg02Et�1[a�at(�t)]Et�1

�
eg(a)�g(at(�t))

�
� e

g0(a) sup g00
fg02Et�1[a�at(�t)]

�
1 + eg(a)�g(a)g0(a)Et�1 [a� at(�t)]

�
:
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Proof of Lemma 8: Multiplying all payo¤s by � results in all the continuation utilities Ut(�t)
and deviation continuation utilities Ut(�t; �

0
t) multiplied by constant �

1� for  6= 1, or having a
constant ln ��

PL�t
s=0 �

s added at time t, for  = 1, and so EF is una¤ected. This multiplication

also results in the marginal utilities of current consumption multiplied by ��, and so PS is

also una¤ected.

Proof of Lemma 9: We prove only the  6= 1 case. For the � as in the proof of Lemma (7:)
we have:

Et�1

"
mu#t (�t�1; �t)

mut(�t�1; �t)

#
� Et�1

h
�
�
(�t�1; �t�1)� e(1�)(g(a(�t�1;�t))�g(a))

i

= Et�1

24"U#t (�t�1; �t)
Ut(�t�1; �t)

# �
1�

e�(1�)[g(a)�g(at(�t�1;�t))] � e(1�)(g(at(�t�1;�t))�g(a))

35
� e

�g0(a) sup g00
fg02Et�1[a�at(�t)]Et�1

�
e�(1+)(1�)[g(a)�g(at(�t�1;�t))]

�
� e

�g0(a) sup g00
fg02Et�1[a�at(�t)]

�
1� 1<1e�(1+)(1�)[g(a)�g(a)]g0(a)(1� )(1 + )Et�1 [a� at(�t)]

�
:

Proof of Lemma 10: We prove only the  6= 1 case. From (E.3) it follows that for every �t
and �0t :

e(���)g
0(a) � yht (�t�1; �t)

1�e�(1�)g(a
h
t (�t�1;�t)) � yht (�t�1; �

0
t)
1�e�(1�)g(a

h
t (�t�1;�

0
t));

and so for every �t and �0t :

yh(�t�1; �
0
t)
�eg(a

h
t (�t�1;�

0
t)) � e�j


1� j(���)g0(a) � yht (�t�1; �t)

�eg(a
h(�t�1;�t));

Et�1
�
muht (�t�1; �t)

�
� e�j


1� j(���)g0(a)+g(a)�g(a) �max

x
muht (�t�1; x):

It follows that for D2 = ej


1� j(���)g0(a)+g(a)�g(a);

Et�1
�
mult(�t�1; �t)

�
Et�1

�
muht (�t�1; �t)

� � Et�1
�
muht (�t�1; �t)

� �
1�D2 �

�
1� Et�1

h
mult(�t�1;�t)

muht (�t�1;�t)

i��
Et�1

�
muht (�t�1; �t)

�
= 1�D2 �

�
1� Et�1

�
mult(�t�1; �t)

muht (�t�1; �t)

��
:

Proof of Lemma 11: Let Y 0 be the payo¤ scheme Y x. For any n; 0 < n < L; we construct the

payo¤ scheme Y n as follows. Start with the payo¤ scheme Y n�1: After any history �n multiply

the payo¤s at time n by �n;ps(�n) > 1 so that PS at history �n is satis�ed; then multiply the

payo¤s after any history �m, m � n and �mjn = �n; by �
n;pu(�n) < 1 so that the continuation

utility at history �n remains unchanged. After any history �n�1 multiply the payo¤s at time
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n � 1 by �n;ps(�n�1) > 1 so that PS at �n�1 is satis�ed; then multiply the payo¤s after any

history �m, m � n� 1 and �mjn�1 = �n�1; by �n;pu(�n�1) < 1 so that the continuation utility
at �n�1 remains unchanged. Follow this procedure until histories at time 1, and let Y

n be the

resulting payo¤ scheme. One can inductively show that �n;pu(�m)� �n;ps(�m) � 1, m � n:

Let A� always require the high e¤ort. Lemma 8 yields that each contract (A�; Y n) satis�es

EF and also PS up to round n. Let Y � = Y L�1. It remains to prove (E.6).

For any history �L we have y
�
L(�L) = yxL(�L) �

QL�1
m=1

QL�1
n=m �

n;pu(�Ljm) � yxL(�L) and so

condition (E.6) is satis�ed.

For any history �t, t < L; we have, by construction above:

mu�t (�t)

muxt (�t)
=

 
tY

m=1

L�1Y
n=m

�n;pu(�tjm)�
L�1Y
n=t

�n;ps(�t)

!�
�
 
L�1Y
n=t

�n;ps(�t)

!�
:

Moreover,

�t;ps(�t)
� =

Et
�
muxt+1(�t�1; �t)

�
Et
�
mut+1(�t�1; �t)

� � �

�
Et

�
muxt+1(�t�1; �t)

mut+1(�t�1; �t)

��
� � ( (Et [a� at+1(�t+1)])) ;

where the �rst inequality follows from Lemma 10, and the second one from Lemma 9. By

the same logic, for any n; t < n � L� 1;

�n;ps(�t)
� =

Et
�
munt+1(�t; �t+1)

�
Et
�
mun�1t+1 (�t; �t+1)

� � �

�
Et

�
munt+1(�t; �t+1)

mun�1t+1 (�t; �t+1)

��
� �

�
Et
�
�n;ps(�t; �t+1)

���
= �

 
Et

"
Et+1

�
munt+2(�t; �t+1; �t+2)

�
Et+1

�
mun�1t+2 (�t; �t+1; �t+2)

�#! � �

�
Et

�
�

�
Et+1

�
munt+2(�t; �t+1; �t+2)

mun�1t+2 (�t; �t+1; �t+2)

����
= �2

�
Et

�
munt+2(�t; �t+1; �t+2)

mun�1t+2 (�t; �t+1; �t+2)

��
� : : : � �n�t

�
Et

�
munn(�t; �t+1; : : :; �n)

mun�1n (�t; �t+1; : : :; �n)

��
� �n�t

�
Et
�
�n;ps(�t; �t+1; : : :; �n)

��� = �n�t

 
Et

"
En
�
muxn+1(�t; �t+1; : : :; �n+1)

�
En [mun+1(�t; �t+1; : : :; �n+1)]

#!
� �n�t+1 (Et [ (En [a� an+1(�t; �t+1; : : :; �n+1)])]) :
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